89,695 research outputs found

    Accounting for the Role of Long Walks on Networks via a New Matrix Function

    Get PDF
    We introduce a new matrix function for studying graphs and real-world networks based on a double-factorial penalization of walks between nodes in a graph. This new matrix function is based on the matrix error function. We find a very good approximation of this function using a matrix hyperbolic tangent function. We derive a communicability function, a subgraph centrality and a double-factorial Estrada index based on this new matrix function. We obtain upper and lower bounds for the double-factorial Estrada index of graphs, showing that they are similar to those of the single-factorial Estrada index. We then compare these indices with the single-factorial one for simple graphs and real-world networks. We conclude that for networks containing chordless cycles---holes---the two penalization schemes produce significantly different results. In particular, we study two series of real-world networks representing urban street networks, and protein residue networks. We observe that the subgraph centrality based on both indices produce significantly different ranking of the nodes. The use of the double factorial penalization of walks opens new possibilities for studying important structural properties of real-world networks where long-walks play a fundamental role, such as the cases of networks containing chordless cycles

    Electron transfer networks

    Get PDF

    Techniques of replica symmetry breaking and the storage problem of the McCulloch-Pitts neuron

    Full text link
    In this article the framework for Parisi's spontaneous replica symmetry breaking is reviewed, and subsequently applied to the example of the statistical mechanical description of the storage properties of a McCulloch-Pitts neuron. The technical details are reviewed extensively, with regard to the wide range of systems where the method may be applied. Parisi's partial differential equation and related differential equations are discussed, and a Green function technique introduced for the calculation of replica averages, the key to determining the averages of physical quantities. The ensuing graph rules involve only tree graphs, as appropriate for a mean-field-like model. The lowest order Ward-Takahashi identity is recovered analytically and is shown to lead to the Goldstone modes in continuous replica symmetry breaking phases. The need for a replica symmetry breaking theory in the storage problem of the neuron has arisen due to the thermodynamical instability of formerly given solutions. Variational forms for the neuron's free energy are derived in terms of the order parameter function x(q), for different prior distribution of synapses. Analytically in the high temperature limit and numerically in generic cases various phases are identified, among them one similar to the Parisi phase in the Sherrington-Kirkpatrick model. Extensive quantities like the error per pattern change slightly with respect to the known unstable solutions, but there is a significant difference in the distribution of non-extensive quantities like the synaptic overlaps and the pattern storage stability parameter. A simulation result is also reviewed and compared to the prediction of the theory.Comment: 103 Latex pages (with REVTeX 3.0), including 15 figures (ps, epsi, eepic), accepted for Physics Report

    Techniques of replica symmetry breaking and the storage problem of the McCulloch-Pitts neuron

    Full text link
    In this article the framework for Parisi's spontaneous replica symmetry breaking is reviewed, and subsequently applied to the example of the statistical mechanical description of the storage properties of a McCulloch-Pitts neuron. The technical details are reviewed extensively, with regard to the wide range of systems where the method may be applied. Parisi's partial differential equation and related differential equations are discussed, and a Green function technique introduced for the calculation of replica averages, the key to determining the averages of physical quantities. The ensuing graph rules involve only tree graphs, as appropriate for a mean-field-like model. The lowest order Ward-Takahashi identity is recovered analytically and is shown to lead to the Goldstone modes in continuous replica symmetry breaking phases. The need for a replica symmetry breaking theory in the storage problem of the neuron has arisen due to the thermodynamical instability of formerly given solutions. Variational forms for the neuron's free energy are derived in terms of the order parameter function x(q), for different prior distribution of synapses. Analytically in the high temperature limit and numerically in generic cases various phases are identified, among them one similar to the Parisi phase in the Sherrington-Kirkpatrick model. Extensive quantities like the error per pattern change slightly with respect to the known unstable solutions, but there is a significant difference in the distribution of non-extensive quantities like the synaptic overlaps and the pattern storage stability parameter. A simulation result is also reviewed and compared to the prediction of the theory.Comment: 103 Latex pages (with REVTeX 3.0), including 15 figures (ps, epsi, eepic), accepted for Physics Report

    Effects of the network structural properties on its controllability

    Full text link
    In a recent paper, it has been suggested that the controllability of a diffusively coupled complex network, subject to localized feedback loops at some of its vertices, can be assessed by means of a Master Stability Function approach, where the network controllability is defined in terms of the spectral properties of an appropriate Laplacian matrix. Following that approach, a comparison study is reported here among different network topologies in terms of their controllability. The effects of heterogeneity in the degree distribution, as well as of degree correlation and community structure, are discussed.Comment: Also available online at: http://link.aip.org/link/?CHA/17/03310

    Continuous Tensor Network States for Quantum Fields

    Full text link
    We introduce a new class of states for bosonic quantum fields which extend tensor network states to the continuum and generalize continuous matrix product states (cMPS) to spatial dimensions d≥2d\geq 2. By construction, they are Euclidean invariant, and are genuine continuum limits of discrete tensor network states. Admitting both a functional integral and an operator representation, they share the important properties of their discrete counterparts: expressiveness, invariance under gauge transformations, simple rescaling flow, and compact expressions for the NN-point functions of local observables. While we discuss mostly the continuous tensor network states extending Projected Entangled Pair States (PEPS), we propose a generalization bearing similarities with the continuum Multi-scale Entanglement Renormalization Ansatz (cMERA).Comment: 16 pages, 5 figures, close to published versio
    • …
    corecore