4,114 research outputs found

    On the volumes and affine types of trades

    Full text link
    A [t][t]-trade is a pair T=(T+,T−)T=(T_+, T_-) of disjoint collections of subsets (blocks) of a vv-set VV such that for every 0≤i≤t0\le i\le t, any ii-subset of VV is included in the same number of blocks of T+T_+ and of T−T_-. It follows that ∣T+∣=∣T−∣|T_+| = |T_-| and this common value is called the volume of TT. If we restrict all the blocks to have the same size, we obtain the classical tt-trades as a special case of [t][t]-trades. It is known that the minimum volume of a nonempty [t][t]-trade is 2t2^t. Simple [t][t]-trades (i.e., those with no repeated blocks) correspond to a Boolean function of degree at most v−t−1v-t-1. From the characterization of Kasami--Tokura of such functions with small number of ones, it is known that any simple [t][t]-trade of volume at most 2⋅2t2\cdot2^t belongs to one of two affine types, called Type\,(A) and Type\,(B) where Type\,(A) [t][t]-trades are known to exist. By considering the affine rank, we prove that [t][t]-trades of Type\,(B) do not exist. Further, we derive the spectrum of volumes of simple trades up to 2.5⋅2t2.5\cdot 2^t, extending the known result for volumes less than 2⋅2t2\cdot 2^t. We also give a characterization of "small" [t][t]-trades for t=1,2t=1,2. Finally, an algorithm to produce [t][t]-trades for specified tt, vv is given. The result of the implementation of the algorithm for t≤4t\le4, v≤7v\le7 is reported.Comment: 30 pages, final version, to appear in Electron. J. Combi

    New Steiner 2-designs from old ones by paramodifications

    Get PDF
    Techniques of producing new combinatorial structures from old ones are commonly called trades. The switching principle applies for a broad class of designs: it is a local transformation that modifies two columns of the incidence matrix. In this paper, we present a construction, which is a generalization of the switching transform for the class of Steiner 2-designs. We call this construction paramodification of Steiner 2-designs, since it modifies the parallelism of a subsystem. We study in more detail the paramodifications of affine planes, Steiner triple systems, and abstract unitals. Computational results show that paramodification can construct many new unitals
    • …
    corecore