1,745 research outputs found

    On integrability of the Yao-Zeng two-component short-pulse equation

    Full text link
    We show how the Yao-Zeng system of coupled short-pulse equations is related to the original short-pulse equation and obtain the correct zero-curvature representation of the Yao-Zeng system via this relationship.Comment: 5 page

    Optical polarization rogue waves from supercontinuum generation in zero dispersion fiber pumped by dissipative soliton

    Get PDF
    Optical rogue waves emerge in nonlinear optical systems with extremely large amplitudes, and leave without a trace. In this work, we reveal the emergence of optical polarization rogue waves in supercontinuum generation from a zero-dispersion fiber, pumped by a dissipative soliton laser. Flat spectral broadening is achieved by modulation instability, followed by cascaded four-wave-mixing. In this process, we identify the emergence of optical polarization rogue waves, based on the probability density function of the relative distance among polarization states. Experimental results show that optical polarization rogue waves originate from vector multi-wave-mixing. Besides, we observe double peaks, and even triple peaks in the histogram of the state of polarization. This is a new and intriguing property, never observed so far in optical rogue waves, for example those emerging in the statistics of pulse intensities. Our polarization domain statistical analysis provides a new insight into the still debated topic of the mechanism for rogue wave generation in optical supercontinuum

    Nonlinear atom optics and bright gap soliton generation in finite optical lattices

    Full text link
    We theoretically investigate the transmission dynamics of coherent matter wave pulses across finite optical lattices in both the linear and the nonlinear regimes. The shape and the intensity of the transmitted pulse are found to strongly depend on the parameters of the incident pulse, in particular its velocity and density: a clear physical picture for the main features observed in the numerical simulations is given in terms of the atomic band dispersion in the periodic potential of the optical lattice. Signatures of nonlinear effects due the atom-atom interaction are discussed in detail, such as atom optical limiting and atom optical bistability. For positive scattering lengths, matter waves propagating close to the top of the valence band are shown to be subject to modulational instability. A new scheme for the experimental generation of narrow bright gap solitons from a wide Bose-Einstein condensate is proposed: the modulational instability is seeded in a controlled way starting from the strongly modulated density profile of a standing matter wave and the solitonic nature of the generated pulses is checked from their shape and their collisional properties

    Exterior complex scaling as a perfect absorber in time-dependent problems

    Full text link
    It is shown that exterior complex scaling provides for complete absorption of outgoing flux in numerical solutions of the time-dependent Schr\"odinger equation with strong infrared fields. This is demonstrated by computing high harmonic spectra and wave-function overlaps with the exact solution for a one-dimensional model system and by three-dimensional calculations for the H atom and a Ne atom model. We lay out the key ingredients for correct implementation and identify criteria for efficient discretization

    Phase retrieval via regularization in self-diffraction based spectral interferometry

    Full text link
    A novel variant of spectral phase interferometry for direct electric-field reconstruction (SPIDER) is introduced and experimentally demonstrated. Other than most previously demonstrated variants of SPIDER, our method is based on a third-order nonlinear optical effect, namely self-diffraction, rather than the second-order effect of sum-frequency generation. On one hand, self-diffraction (SD) substantially simplifies phase-matching capabilities for multi-octave spectra that cannot be hosted by second-order processes, given manufacturing limitations of crystal lengths in the few-micrometer range. On the other hand, however, SD SPIDER imposes an additional constraint as it effectively measures the spectral phase of a self-convolved spectrum rather than immediately measuring the fundamental phase. Reconstruction of the latter from the measured phase and the spectral amplitude of the fundamental turns out to be an ill-posed problem, which we address by a regularization approach. We discuss the numerical implementation in detail and apply it to measured data from a Ti:sapphire amplifier system. Our experimental demonstration used 40-fs pulses and a 500 μ\mum thick BaF2{}_2 crystal to show that the SD SPIDER signal is sufficiently strong to be separable from stray light. Extrapolating these measurements to the thinnest conceivable nonlinear media, we predict that bandwidths well above two optical octaves can be measured by a suitably adapted SD SPIDER apparatus, enabling the direct characterization of pulses down to single-femtosecond pulse durations. Such characteristics appear out of range for any currently established pulse measurement technique

    From modulational instability to focusing dam breaks in water waves

    Get PDF
    We report water wave experiments performed in a long tank where we consider the evolution of nonlinear deep-water surface gravity waves with the envelope in the form of a large-scale rectangular barrier. Our experiments reveal that, for a range of initial parameters, the nonlinear wave packet is not disintegrated by the Benjamin-Feir instability but exhibits a specific, strongly nonlinear modulation, which propagates from the edges of the wavepacket towards the center with finite speed. Using numerical tools of nonlinear spectral analysis of experimental data we identify the observed envelope wave structures with focusing dispersive dam break flows, a peculiar type of dispersive shock waves recently described in the framework of the semi-classical limit of the 1D focusing nonlinear Schr"odinger equation (1D-NLSE). Our experimental results are shown to be in a good quantitative agreement with the predictions of the semi-classical 1D-NLSE theory. This is the first observation of the persisting dispersive shock wave dynamics in a modulationally unstable water wave system
    corecore