63,373 research outputs found

    Eigenvalue Outliers of non-Hermitian Random Matrices with a Local Tree Structure

    Get PDF
    Spectra of sparse non-Hermitian random matrices determine the dynamics of complex processes on graphs. Eigenvalue outliers in the spectrum are of particular interest, since they determine the stationary state and the stability of dynamical processes. We present a general and exact theory for the eigenvalue outliers of random matrices with a local tree structure. For adjacency and Laplacian matrices of oriented random graphs, we derive analytical expressions for the eigenvalue outliers, the first moments of the distribution of eigenvector elements associated with an outlier, the support of the spectral density, and the spectral gap. We show that these spectral observables obey universal expressions, which hold for a broad class of oriented random matrices.Comment: 25 pages, 4 figure

    The spectral analysis of random graph matrices

    Get PDF
    A random graph model is a set of graphs together with a probability distribution on that set. A random matrix is a matrix with entries consisting of random values from some specified distribution. Many different random matrices can be associated with a random graph. The spectra of these corresponding matrices are called the spectra of the random graph. The spectra of random graphs are critical to understanding the properties of random graphs. This thesis contains a number of results on the spectra and related spectral properties of several random graph models. In Chapter 1, we briefly present the background, some history as well as the main ideas behind our work. Apart from the introduction in Chapter 1, the first part of the main body of the thesis is Chapter 2. In this part we estimate the eigenvalues of the Laplacian matrix of random multipartite graphs. We also investigate some spectral properties of random multipartite graphs, such as the Laplacian energy, the Laplacian Estrada index, and the von Neumann entropy. The second part consists of Chapters 3, 4, 5 and 6. Guo and Mohar showed that mixed graphs are equivalent to digraphs if we regard (replace) each undirected edge as (by) two oppositely directed arcs. Motivated by the work of Guo and Mohar, we initially propose a new random graph model – the random mixed graph. Each arc is determined by an in-dependent random variable. The main themes of the second part are the spectra and related spectral properties of random mixed graphs. In Chapter 3, we prove that the empirical distribution of the eigenvalues of the Hermitian adjacency matrix converges to Wigner’s semicircle law. As an application of the LSD of Hermitian adjacency matrices, we estimate the Hermitian energy of a random mixed graph. In Chapter 4, we deal with the asymptotic behavior of the spectrum of the Hermitian adjacency matrix of random mixed graphs. We derive a separation result between the first and the remaining eigenvalues of the Hermitian adjacency matrix. As an application of the asymptotic behavior of the spectrum of the Hermitian adjacency matrix, we estimate the spectral moments of random mixed graphs. In Chapter 5, we prove that the empirical distribution of the eigenvalues of the normalized Hermitian Laplacian matrix converges to Wigner’s semicircle law. Moreover, in Chapter 6, we provide several results on the spectra of general random mixed graphs. In particular, we present a new probability inequality for sums of independent, random, self-adjoint matrices, and then apply this probability inequality to matrices arising from the study of random mixed graphs. We prove a concentration result involving the spectral norm of a random matrix and that of its expectation. Assuming that the probabilities of all the arcs of the mixed graph are mutually independent, we write the Hermitian adjacency matrix as a sum of random self-adjoint matrices. Using this, we estimate the spectrum of the Hermitian adjacency matrix, and prove a concentration result involving the spectrum of the normalized Hermitian Laplacian matrix and its expectation. Finally, in Chapter 7, we estimate upper bounds for the spectral radii of the skew adjacency matrix and skew Randić matrix of random oriented graphs

    Random graph states, maximal flow and Fuss-Catalan distributions

    Full text link
    For any graph consisting of kk vertices and mm edges we construct an ensemble of random pure quantum states which describe a system composed of 2m2m subsystems. Each edge of the graph represents a bi-partite, maximally entangled state. Each vertex represents a random unitary matrix generated according to the Haar measure, which describes the coupling between subsystems. Dividing all subsystems into two parts, one may study entanglement with respect to this partition. A general technique to derive an expression for the average entanglement entropy of random pure states associated to a given graph is presented. Our technique relies on Weingarten calculus and flow problems. We analyze statistical properties of spectra of such random density matrices and show for which cases they are described by the free Poissonian (Marchenko-Pastur) distribution. We derive a discrete family of generalized, Fuss-Catalan distributions and explicitly construct graphs which lead to ensembles of random states characterized by these novel distributions of eigenvalues.Comment: 37 pages, 24 figure

    Boosted Simon-Wolff Spectral Criterion and Resonant Delocalization

    Full text link
    Discussed here are criteria for the existence of continuous components in the spectra of operators with random potential. First, the essential condition for the Simon-Wolff criterion is shown to be measurable at infinity. By implication, for the iid case and more generally potentials with the K-property the criterion is boosted by a zero-one law. The boosted criterion, combined with tunneling estimates, is then applied for sufficiency conditions for the presence of continuous spectrum for random Schr\"odinger operators. The general proof strategy which this yields is modeled on the resonant delocalization arguments by which continuous spectrum in the presence of disorder was previously established for random operators on tree graphs. In another application of the Simon-Wolff rank-one analysis we prove the almost sure simplicity of the pure point spectrum for operators with random potentials of conditionally continuous distribution.Comment: In version 2 the presentation was somewhat streamlined, and a related new (/improved) result was added (Appendix B

    Exploring the “Middle Earth” of network spectra via a Gaussian matrix function

    Get PDF
    We study a Gaussian matrix function of the adjacency matrix of artificial and real-world networks. We motivate the use of this function on the basis of a dynamical process modeled by the time-dependent Schrodinger equation with a squared Hamiltonian. In particular, we study the Gaussian Estrada index - an index characterizing the importance of eigenvalues close to zero. This index accounts for the information contained in the eigenvalues close to zero in the spectra of networks. Such method is a generalization of the so-called "Folded Spectrum Method" used in quantum molecular sciences. Here we obtain bounds for this index in simple graphs, proving that it reaches its maximum for star graphs followed by complete bipartite graphs. We also obtain formulas for the Estrada Gaussian index of Erdos-Renyi random graphs as well as for the Barabasi-Albert graphs. We also show that in real-world networks this index is related to the existence of important structural patters, such as complete bipartite subgraphs (bicliques). Such bicliques appear naturally in many real-world networks as a consequence of the evolutionary processes giving rise to them. In general, the Gaussian matrix function of the adjacency matrix of networks characterizes important structural information not described in previously used matrix functions of graphs

    Spectra of complex networks

    Full text link
    We propose a general approach to the description of spectra of complex networks. For the spectra of networks with uncorrelated vertices (and a local tree-like structure), exact equations are derived. These equations are generalized to the case of networks with correlations between neighboring vertices. The tail of the density of eigenvalues ρ(λ)\rho(\lambda) at large λ|\lambda| is related to the behavior of the vertex degree distribution P(k)P(k) at large kk. In particular, as P(k)kγP(k) \sim k^{-\gamma}, ρ(λ)λ12γ\rho(\lambda) \sim |\lambda|^{1-2\gamma}. We propose a simple approximation, which enables us to calculate spectra of various graphs analytically. We analyse spectra of various complex networks and discuss the role of vertices of low degree. We show that spectra of locally tree-like random graphs may serve as a starting point in the analysis of spectral properties of real-world networks, e.g., of the Internet.Comment: 10 pages, 4 figure

    Spectra of Sparse Random Matrices

    Get PDF
    We compute the spectral density for ensembles of of sparse symmetric random matrices using replica, managing to circumvent difficulties that have been encountered in earlier approaches along the lines first suggested in a seminal paper by Rodgers and Bray. Due attention is payed to the issue of localization. Our approach is not restricted to matrices defined on graphs with Poissonian degree distribution. Matrices defined on regular random graphs or on scale-free graphs, are easily handled. We also look at matrices with row constraints such as discrete graph Laplacians. Our approach naturally allows to unfold the total density of states into contributions coming from vertices of different local coordination.Comment: 22 papges, 8 figures (one on graph-Laplacians added), one reference added, some typos eliminate
    corecore