251 research outputs found

    Application of the Rotation Matrix Natural Invariants to Impedance Control of Rotational Parallel Robots

    Get PDF
    Force control of parallel robots with rotational degrees of freedom through impedance algorithms is considerably influenced by the representation method of the end-effector orientation. Using the natural invariants of the rotation matrix and the angular velocity vector in the impedance control law has some theoretical advantages, which derive from the Euclidean-geometric meaning of these entities. These benefits are particularly evident in case of robotic architectures with three rotational degrees of freedom (serial or parallel wrists with spherical motion). The behaviour of a 3-CPU parallel robot controlled by an impedance algorithm based on this concepts is assessed through multibody simulations, and the results confirm the effectiveness of the proposed approach

    PID control with gravity compensation for hydraulic 6-DOF parallel manipulator

    Get PDF
    Abstract A novel model-based controller for 6 degree-of-freedom (DOF) hydraulic driven parallel manipulator considering the nonlinear characteristic of hydraulic systems-proportional plus derivative with dynamic gravity compensation controller is presented, in order to improve control performance and eliminate steady state errors. In this paper, 6-DOF parallel manipulator is described as multi-rigid-body systems, the dynamic models including mechanical system and hydraulic driven system are built using Kane method and hydromechanics methodology, the numerical forward kinematics and inverse kinematics is solved with Newton-Raphson method and close-form solutions. The model-based controller is developed with feedback of actuator length, desired trajectories and system states acquired by forward kinematics solution as the input and servovalve current as its output. The hydraulic system is decoupled by local velocity compensation in inner control loop prerequisite for the controller. The performance revolving stability, accuracy and robustness of the proposed control scheme for 6-DOF parallel manipulator is analyzed in theory and simulation. The theoretical analysis and simulation results indicate the controller can improve the control performance and eliminate the steady state errors of 6-DOF hydraulic driven parallel manipulator

    Fast Dynamic Model of a Moving-base 6-DOF Parallel Manipulator

    Get PDF

    A methodology for the Lower Limb Robotic Rehabilitation system

    Get PDF
    The overall goal of this thesis is to develop a new functional lower limb robot-assisted rehabilitation system for people with a paretic lower limb. A unilateral rehabilitation method is investigated, where the robot acts as an assistive device to provide the impaired leg therapeutic training through simulating the kinematics and dynamics of the ankle and lower leg movements. Foot trajectories of healthy subjects and post-stroke patients were recorded by a dedicated optical motion tracking system in a clinical gait measurement laboratory. A prototype 6 degrees of freedom parallel robot was initially built in order to verify capability of achieving singularity-free foot trajectories of healthy subjects in various exercises. This was then followed by building and testing another larger parallel robot to investigate the real-sized foot trajectories of patients. The overall results verify the designed robot’s capability in successfully tracking foot trajectories during different exercises. The thesis finally proposes a system of bilateral rehabilitation based on the concept of self-learning, where a passive parallel mechanism follows and records motion signatures of the patient’s healthy leg, and an active parallel mechanism provides motion for the impaired leg based on the kinematic mapping of the motion produced by the passive mechanism

    Commande Vision/Force de robots parallèles.

    Get PDF
    National audienceIn this paper, force and position control of parallel kinematic machines is discussed. Cartesian space computed torque control is applied to achieve force and position servoing directly in the task space within a sensor based control architecture. The originality of the approach resides in the use of a vision system as an exteroceptive pose measurement of a parallel machine tool for force control purposes

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms

    Get PDF
    This paper presents an overview of the literature on kinematic and calibration models of parallel mechanisms, the influence of sensors in the mechanism accuracy and parallel mechanisms used as sensors. The most relevant classifications to obtain and solve kinematic models and to identify geometric and non-geometric parameters in the calibration of parallel robots are discussed, examining the advantages and disadvantages of each method, presenting new trends and identifying unsolved problems. This overview tries to answer and show the solutions developed by the most up-to-date research to some of the most frequent questions that appear in the modelling of a parallel mechanism, such as how to measure, the number of sensors and necessary configurations, the type and influence of errors or the number of necessary parameters

    Direct Singular Positions of the Parallel Manipulator Tricept

    Get PDF
    [[abstract]]In this article, the direct singular positions of the parallel manipulator Tricept are determined. An alternative 3 x 3 Jacobian matrix, simpler than the existing one, is obtained in this study. For a given moving platform's orientation, the determinant of this Jacobian matrix may be expressed as a cubic polynomial in moving platform's equation length. Direct singular positions may thus be obtained by solving cubic polynomial equations. For an arbitrarily chosen moving platform's orientation, there exists at least one moving platform's extension length that causes direct kinematic singularity. It is found that if moving platform's size is larger than a specific value, then within the moving platform's domain there exist two regions, in which direct kinematic singularities can only occur at positions impossible to reach.[[notice]]補正完畢[[booktype]]紙本[[countrycodes]]GB
    • …
    corecore