2,889 research outputs found

    Spread of epileptiform activity in the immature rat neocortex studied with voltage-sensitive dyes and laser scanning microscopy

    Get PDF
    1. Adult rats and rats with a postnatal age of 3-29 days (PN 3-29) were used for the preparation of in vitro slices of the frontal neocortex. Epileptiform activity was induced by bath application of the gamma-aminobutyric acid-A (GABAA) receptor antagonists bicuculline or picrotoxin. 2. The voltage-sensitive dye RH 414 and a laser scanning microscope were used for multiple-site optical recordings of membrane potential changes associated with epileptiform activity. Optical signals were compared with simultaneously measured extra-cellular field potentials. 3. Optical signals could be reliably recorded for the duration of the experiments (2-4 h). Extracellular recordings of convulsant-induced paroxysmal depolarizing shifts (PDSs) in slices stained with RH 414 were comparable with those obtained in unstained slices. Changes in dye signals in response to reductions in extracellular calcium, addition of tetrodotoxin (TTX), or application of excitatory amino acid receptor antagonists indicate that the fluorescence changes correlate well with established electrophysiological measures of epileptiform activity. 4. In slices from adult animals, dye signals were observed at all recording sites. The response with the shortest latency occurred invariably at the site of stimulation, and activity spread rapidly in both vertical and horizontal directions. Spread was significantly faster in the vertical than in the horizontal direction. 5. Epileptiform activity was absent or only weakly expressed in slices from PN 3-9 animals. Activity was detectable predominantly in upper cortical layers. 6. Dye signals were observed at all measurement points in slices from PN 10-19 animals. In this age group, peak amplitude increased with spread of activity from lower to upper cortical layers. There was no significant difference between the speed of propagation in the vertical and in the horizontal directions. Spontaneous epileptiform activity occurred at a high rate in the PN 10-19 age group, and signals associated with spontaneous epileptiform events were largest in upper layers. 7. In the PN 10-19 age group, optical signals were characterized by the repetitive occurrence of PDS discharges superimposed on a sustained response. The amplitude of the sustained response decreased with increasing distance from the site of stimulation. Analysis of the latencies revealed that the superimposed PDS-like events were generated at multiple sites within the scanning area. Amplitude and rate of rise were largest in slices from PN 10-19 animals. These values declined with ongoing development

    Excitatory postsynaptic potentials in rat neocortical neurons in vitro. III. Effects of a quinoxalinedione non-NMDA receptor antagonist

    Get PDF
    1. Intracellular microelectrodes were used to obtain recordings from neurons in layer II/III of rat frontal cortex. A bipolar electrode positioned in layer IV of the neocortex was used to evoke postsynaptic potentials. Graded series of stimulation were employed to selectively activate different classes of postsynaptic responses. The sensitivity of postsynaptic potentials and iontophoretically applied neurotransmitters to the non-N-methyl-D-asparate (NMDA) antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) was examined. 2. As reported previously, low-intensity electrical stimulation of cortical layer IV evoked short-latency early excitatory postsynaptic potentials (eEPSPs) in layer II/III neurons. CNQX reversibly antagonized eEPSPs in a dose-dependent manner. Stimulation at intensities just subthreshold for activation of inhibitory postsynaptic potentials (IPSPs) produced long-latency (10 to 40-ms) EPSPs (late EPSPs or 1EPSPs). CNQX was effective in blocking 1EPSPs. 3. With the use of stimulus intensities at or just below threshold for evoking an action potential, complex synaptic potentials consisting of EPSP-IPSP sequences were observed. Both early, Cl(-)-dependent and late, K(+)-dependent IPSPs were reduced by CNQX. This effect was reversible on washing. This disinhibition could lead to enhanced excitability in the presence of CNQX. 4. Iontophoretic application of quisqualate produced a membrane depolarization with superimposed action potentials, whereas NMDA depolarized the membrane potential and evoked bursts of action potentials. At concentrations up to 5 microM, CNQX selectively antagonized quisqualate responses. NMDA responses were reduced by 10 microM CNQX. D-Serine (0.5-2 mM), an agonist at the glycine regulatory site on the NMDA receptor, reversed the CNQX depression of NMDA responses

    Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures

    Get PDF
    The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis

    Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis

    Get PDF
    The microstructure of the layers in the hippocampal CA1 area suggests that differences may exist between the electrical conductivities of these layers. In order to quantify these differences a sinusoidal current was applied to hippocampal slices in a bathing medium and potential differences were measured between pairs of neighbouring electrodes from an array. The maximum relative conductivity (100%) was found in the middle part of str. radiatum, with a gradual decrease towards the fissure (84%). There was also a gradual decrease towards the alveus (70%), but in str. pyramidale the relative conductivity was only 42%. No differences were observed between the laminar conductivities of normal hippocampal slices and slices generating spontaneous interictal bursts. These results were used to carry out a one-dimensional CSD analysis of field potentials evoked by Schaffer collateral stimulation. Despite the differences in conductivity, the homogeneous and the inhomogeneous CSD approximations did not lead to differences in the spatial distribution of sources and sinks and only gave some differences in the current density, especially at the pyramidal layer and its close environment

    Physiological sharp wave-ripples and interictal events in vitro: What’s the difference?

    Get PDF
    Sharp wave-ripples and interictal events are physiological and pathological forms of transient high activity in the hippocampus with similar features. Sharp wave-ripples have been shown to be essential in memory consolidation, while epileptiform (interictal) events are thought to be damaging. It is essential to grasp the difference between physiological sharp wave-ripples and pathological interictal events in order to understand the failure of control mechanisms in the latter case. We investigated the dynamics of activity generated intrinsically in the CA3 region of the mouse hippocampus in vitro, using four different types of intervention to induce epiletiform activity. As a result, sharp wave-ripples spontaneously occurring in CA3 disappeared, and following an asynchronous transitory phase, activity reorganized into a new form of pathological synchrony. During epileptiform events, all neurons increased their firing rate compared to sharp wave-ripples. Different cell types showed complementary firing: parvalbumin-positive basket cells and some axo-axonic cells stopped firing due to a depolarization block at the climax of the events in high potassium, 4-aminopyridine and zero magnesium models, but not in the gabazine model. In contrast, pyramidal cells started firing maximally at this stage. To understand the underlying mechanism we measured changes of intrinsic neuronal and transmission parameters in the high potassium model. We found that the cellular excitability increased and excitatory transmission was enhanced, whereas inhibitory transmission was compromised. We observed a strong short-term depression in parvalbumin-positive basket cell to pyramidal cell transmission. Thus, the collapse of pyramidal cell perisomatic inhibition appears to be a crucial factor in the emergence of epileptiform events

    Involvement of fast-spiking cells in ictal sequences during spontaneous seizures in rats with chronic temporal lobe epilepsy

    Get PDF
    Epileptic seizures represent altered neuronal network dynamics, but the temporal evolution and cellular substrates of the neuronal activity patterns associated with spontaneous seizures are not fully understood. We used simultaneous recordings from multiple neurons in the hippocampus and neocortex of rats with chronic temporal lobe epilepsy to demonstrate that subsets of cells discharge in a highly stereotypical sequential pattern during ictal events, and that these stereotypical patterns were reproducible across consecutive seizures. In contrast to the canonical view that principal cell discharges dominate ictal events, the ictal sequences were predominantly composed of fast-spiking, putative inhibitory neurons, which displayed unusually strong coupling to local field potential even before seizures. The temporal evolution of activity was characterized by unique dynamics where the most correlated neuronal pairs before seizure onset displayed the largest increases in correlation strength during the seizures. These results demonstrate the selective involvement of fast spiking interneurons in structured temporal sequences during spontaneous ictal events in hippocampal and neocortical circuits in experimental models of chronic temporal lobe epilepsy

    Network perspectives on epilepsy using EEG/MEG source connectivity

    Get PDF
    The evolution of EEG/MEG source connectivity is both, a promising, and controversial advance in the characterization of epileptic brain activity. In this narrative review we elucidate the potential of this technology to provide an intuitive view of the epileptic network at its origin, the different brain regions involved in the epilepsy, without the limitation of electrodes at the scalp level. Several studies have confirmed the added value of using source connectivity to localize the seizure onset zone and irritative zone or to quantify the propagation of epileptic activity over time. It has been shown in pilot studies that source connectivity has the potential to obtain prognostic correlates, to assist in the diagnosis of the epilepsy type even in the absence of visually noticeable epileptic activity in the EEG/MEG, and to predict treatment outcome. Nevertheless, prospective validation studies in large and heterogeneous patient cohorts are still lacking and are needed to bring these techniques into clinical use. Moreover, the methodological approach is challenging, with several poorly examined parameters that most likely impact the resulting network patterns. These fundamental challenges affect all potential applications of EEG/MEG source connectivity analysis, be it in a resting, spiking, or ictal state, and also its application to cognitive activation of the eloquent area in presurgical evaluation. However, such method can allow unique insights into physiological and pathological brain functions and have great potential in (clinical) neuroscience
    • …
    corecore