383 research outputs found

    The finite element method in low speed aerodynamics

    Get PDF
    The finite element procedure is shown to be of significant impact in design of the 'computational wind tunnel' for low speed aerodynamics. The uniformity of the mathematical differential equation description, for viscous and/or inviscid, multi-dimensional subsonic flows about practical aerodynamic system configurations, is utilized to establish the general form of the finite element algorithm. Numerical results for inviscid flow analysis, as well as viscous boundary layer, parabolic, and full Navier Stokes flow descriptions verify the capabilities and overall versatility of the fundamental algorithm for aerodynamics. The proven mathematical basis, coupled with the distinct user-orientation features of the computer program embodiment, indicate near-term evolution of a highly useful analytical design tool to support computational configuration studies in low speed aerodynamics

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is a combined activity of Case Western Reserve University, Ohio Aerospace Institute (OAI) and NASA Lewis. The purpose of ICOMP is to develop techniques to improve problem solving capabilities in all aspects of computational mechanics related to propulsion. The activities at ICOMP during 1991 are described

    Aeroacoustic diffraction and dissipation by a short propeller cowl in subsonic flight

    Get PDF
    This report develops and applies an aeroacoustic diffraction theory for a duct, or cowl, placed around modelled sources of propeller noise. The regime of flight speed is high subsonic. The modelled cowl's inner wall contains a liner with axially variable properties. Its exterior is rigid. The analysis replaces both sides with an unsteady lifting surface coupled to a dynamic thickness problem. The resulting pair of aeroacoustic governing equations for a lined 'ring wing' is valid both for a passive and for an active liner. Their numerical solution yields the effective dipole and monopole distributions of the shrouding system and thereby determines the cowl-diffracted component of the total radiated field. The sample calculations here include a preliminary parametric search for that liner layout which maximizes the cowl's shielding effectiveness. The main conclusion of the study is that a short cowl, passively lined, should provide moderate reductions in propeller noise

    Acoustic Source Characterization of Marine Propulsors

    Get PDF
    Marine propulsors represent one of the most important contributors among anthropogenic sounds radiated into water. Blade based propulsors, e.g., propellers, generate tones at the blade passing frequency and its harmonics, especially in cavitating conditions. In addition to hydrodynamic noise, pressure fluctuations cause vibrations in ship hull leading to mechanical noise. For noise prediction purposes, it is highly beneficial to characterize the noise sources as simplified, complex valued arrays having information on source positions, source strengths and phases. In this paper, procedure to characterize marine propulsors as acoustic sources with inverse method is introduced. First, the numerical model with complete hydro-acoustic sources is investigated. Second, a source model composed of sensible number and distribution of elementary (“equivalent”) compact sources is specified. Then selected responses are used as input in source characterization with inverse method. Finally, the model with equivalent sources is solved and the results are validated by comparison against the results from the complete simulation model. The introduced acoustic source characterization procedure of marine propulsors is applicable also for the responses determined experimentally, e.g., in a cavitation tunnel when the pressure transducer array is determined appropriately

    Boundary integral methods for acoustic scattering and radiation

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Introduction to experimental aeroacoustics, Lecture 1

    Get PDF
    This introductory lecture gives an overview of the challenges and pitfalls of wind tunnel experiments in aeroacoustics. Most concepts introduced here will be developed in following lecture

    Wind tunnel wall interference (January 1980 - May 1988): A selected, annotated bibliography

    Get PDF
    This selected bibliography lists 423 entries on the subject of wall interference during testing in wind tunnels. It is the third in a series of bibliographies on the subject. The first, NASA TM-87639, August 1986, is concerned with the reduction of wall interference by the use of adaptive walls. The second, NASA TP-89066, December 1986, is on wall interference in V/STOL and high lift testing. This, the third in the series, covers the wall interference literature published during the period January 1980 through May 1988, generally excluding those topics covered in the first two parts
    corecore