40 research outputs found

    Linear Network Coding for Two-Unicast-ZZ Networks: A Commutative Algebraic Perspective and Fundamental Limits

    Full text link
    We consider a two-unicast-ZZ network over a directed acyclic graph of unit capacitated edges; the two-unicast-ZZ network is a special case of two-unicast networks where one of the destinations has apriori side information of the unwanted (interfering) message. In this paper, we settle open questions on the limits of network coding for two-unicast-ZZ networks by showing that the generalized network sharing bound is not tight, vector linear codes outperform scalar linear codes, and non-linear codes outperform linear codes in general. We also develop a commutative algebraic approach to deriving linear network coding achievability results, and demonstrate our approach by providing an alternate proof to the previous results of C. Wang et. al., I. Wang et. al. and Shenvi et. al. regarding feasibility of rate (1,1)(1,1) in the network.Comment: A short version of this paper is published in the Proceedings of The IEEE International Symposium on Information Theory (ISIT), June 201

    General Scheme for Perfect Quantum Network Coding with Free Classical Communication

    Full text link
    This paper considers the problem of efficiently transmitting quantum states through a network. It has been known for some time that without additional assumptions it is impossible to achieve this task perfectly in general -- indeed, it is impossible even for the simple butterfly network. As additional resource we allow free classical communication between any pair of network nodes. It is shown that perfect quantum network coding is achievable in this model whenever classical network coding is possible over the same network when replacing all quantum capacities by classical capacities. More precisely, it is proved that perfect quantum network coding using free classical communication is possible over a network with kk source-target pairs if there exists a classical linear (or even vector linear) coding scheme over a finite ring. Our proof is constructive in that we give explicit quantum coding operations for each network node. This paper also gives an upper bound on the number of classical communication required in terms of kk, the maximal fan-in of any network node, and the size of the network.Comment: 12 pages, 2 figures, generalizes some of the results in arXiv:0902.1299 to the k-pair problem and codes over rings. Appeared in the Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP'09), LNCS 5555, pp. 622-633, 200

    Multiple Unicast Capacity of 2-Source 2-Sink Networks

    Full text link
    We study the sum capacity of multiple unicasts in wired and wireless multihop networks. With 2 source nodes and 2 sink nodes, there are a total of 4 independent unicast sessions (messages), one from each source to each sink node (this setting is also known as an X network). For wired networks with arbitrary connectivity, the sum capacity is achieved simply by routing. For wireless networks, we explore the degrees of freedom (DoF) of multihop X networks with a layered structure, allowing arbitrary number of hops, and arbitrary connectivity within each hop. For the case when there are no more than two relay nodes in each layer, the DoF can only take values 1, 4/3, 3/2 or 2, based on the connectivity of the network, for almost all values of channel coefficients. When there are arbitrary number of relays in each layer, the DoF can also take the value 5/3 . Achievability schemes incorporate linear forwarding, interference alignment and aligned interference neutralization principles. Information theoretic converse arguments specialized for the connectivity of the network are constructed based on the intuition from linear dimension counting arguments.Comment: 6 pages, 7 figures, submitted to IEEE Globecom 201

    "Graph Entropy, Network Coding and Guessing games"

    Get PDF
    We introduce the (private) entropy of a directed graph (in a new network coding sense) as well as a number of related concepts. We show that the entropy of a directed graph is identical to its guessing number and can be bounded from below with the number of vertices minus the size of the graph’s shortest index code. We show that the Network Coding solvability of each speciïŹc multiple unicast network is completely determined by the entropy (as well as by the shortest index code) of the directed graph that occur by identifying each source node with each corresponding target node. Shannon’s information inequalities can be used to calculate up- per bounds on a graph’s entropy as well as calculating the size of the minimal index code. Recently, a number of new families of so-called non-shannon-type information inequalities have been discovered. It has been shown that there exist communication networks with a ca- pacity strictly ess than required for solvability, but where this fact cannot be derived using Shannon’s classical information inequalities. Based on this result we show that there exist graphs with an entropy that cannot be calculated using only Shannon’s classical information inequalities, and show that better estimate can be obtained by use of certain non-shannon-type information inequalities

    On the Solvability of Three-Pair Networks With Common Bottleneck Links

    Get PDF
    Session We2A: Network Coding IIWe consider the solvability problem under network coding and derive a sufficient and necessary condition for 3-pair networks with common “bottleneck links” being solvable. We show that, for such networks: (1) the solvability can be determined in polynomial time; (2) being solvable is equivalent to being linear solvable; (3) finite fields of size 2 or 3 are sufficient to construct linear solutions.published_or_final_versio

    Alignment based Network Coding for Two-Unicast-Z Networks

    Full text link
    In this paper, we study the wireline two-unicast-Z communication network over directed acyclic graphs. The two-unicast-Z network is a two-unicast network where the destination intending to decode the second message has apriori side information of the first message. We make three contributions in this paper: 1. We describe a new linear network coding algorithm for two-unicast-Z networks over directed acyclic graphs. Our approach includes the idea of interference alignment as one of its key ingredients. For graphs of a bounded degree, our algorithm has linear complexity in terms of the number of vertices, and polynomial complexity in terms of the number of edges. 2. We prove that our algorithm achieves the rate-pair (1, 1) whenever it is feasible in the network. Our proof serves as an alternative, albeit restricted to two-unicast-Z networks over directed acyclic graphs, to an earlier result of Wang et al. which studied necessary and sufficient conditions for feasibility of the rate pair (1, 1) in two-unicast networks. 3. We provide a new proof of the classical max-flow min-cut theorem for directed acyclic graphs.Comment: The paper is an extended version of our earlier paper at ITW 201
    corecore