15,908 research outputs found

    Hierarchical Riesz bases for Hs(Omega), 1 < s < 5/2

    Get PDF
    On arbitrary polygonal domains OmegasubsetRR2Omega subset RR^2, we construct C1C^1 hierarchical Riesz bases for Sobolev spaces Hs(Omega)H^s(Omega). In contrast to an earlier construction by Dahmen, Oswald, and Shi (1994), our bases will be of Lagrange instead of Hermite type, by which we extend the range of stability from sin(2,frac52)s in (2,frac{5}{2}) to sin(1,frac52)s in (1,frac{5}{2}). Since the latter range includes s=2s=2, with respect to the present basis, the stiffness matrices of fourth-order elliptic problems are uniformly well-conditioned

    About the Algebraic Solutions of Smallest Enclosing Cylinders Problems

    Full text link
    Given n points in Euclidean space E^d, we propose an algebraic algorithm to compute the best fitting (d-1)-cylinder. This algorithm computes the unknown direction of the axis of the cylinder. The location of the axis and the radius of the cylinder are deduced analytically from this direction. Special attention is paid to the case d=3 when n=4 and n=5. For the former, the minimal radius enclosing cylinder is computed algebrically from constrained minimization of a quartic form of the unknown direction of the axis. For the latter, an analytical condition of existence of the circumscribed cylinder is given, and the algorithm reduces to find the zeroes of an one unknown polynomial of degree at most 6. In both cases, the other parameters of the cylinder are deduced analytically. The minimal radius enclosing cylinder is computed analytically for the regular tetrahedron and for a trigonal bipyramids family with a symmetry axis of order 3.Comment: 13 pages, 0 figure; revised version submitted to publication (previous version is a copy of the original one of 2010

    Inhomogeneous magnetization in dipolar ferromagnetic liquids

    Full text link
    At high densities fluids of strongly dipolar spherical particles exhibit spontaneous long-ranged orientational order. Typically, due to demagnetization effects induced by the long range of the dipolar interactions, the magnetization structure is spatially inhomogeneous and depends on the shape of the sample. We determine this structure for a cubic sample by the free minimization of an appropriate microscopic density functional using simulated annealing. We find a vortex structure resembling four domains separated by four domain walls whose thickness increases proportional to the system size L. There are indications that for large L the whole configuration scales with the system size. Near the axis of the mainly planar vortex structure the direction of the magnetization escapes into the third dimension or, at higher temperatures, the absolute value of the magnetization is strongly reduced. Thus the orientational order is characterized by two point defects at the top and the bottom of the sample, respectively. The equilibrium structure in an external field and the transition to a homogeneous magnetization for strong fields are analyzed, too.Comment: 17 postscript figures included, submitted to Phys. Rev.
    • …
    corecore