10,842 research outputs found

    Boosted Random ferns for object detection

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper we introduce the Boosted Random Ferns (BRFs) to rapidly build discriminative classifiers for learning and detecting object categories. At the core of our approach we use standard random ferns, but we introduce four main innovations that let us bring ferns from an instance to a category level, and still retain efficiency. First, we define binary features on the histogram of oriented gradients-domain (as opposed to intensity-), allowing for a better representation of intra-class variability. Second, both the positions where ferns are evaluated within the sliding window, and the location of the binary features for each fern are not chosen completely at random, but instead we use a boosting strategy to pick the most discriminative combination of them. This is further enhanced by our third contribution, that is to adapt the boosting strategy to enable sharing of binary features among different ferns, yielding high recognition rates at a low computational cost. And finally, we show that training can be performed online, for sequentially arriving images. Overall, the resulting classifier can be very efficiently trained, densely evaluated for all image locations in about 0.1 seconds, and provides detection rates similar to competing approaches that require expensive and significantly slower processing times. We demonstrate the effectiveness of our approach by thorough experimentation in publicly available datasets in which we compare against state-of-the-art, and for tasks of both 2D detection and 3D multi-view estimation.Peer ReviewedPostprint (author's final draft

    How to Find More Supernovae with Less Work: Object Classification Techniques for Difference Imaging

    Get PDF
    We present the results of applying new object classification techniques to difference images in the context of the Nearby Supernova Factory supernova search. Most current supernova searches subtract reference images from new images, identify objects in these difference images, and apply simple threshold cuts on parameters such as statistical significance, shape, and motion to reject objects such as cosmic rays, asteroids, and subtraction artifacts. Although most static objects subtract cleanly, even a very low false positive detection rate can lead to hundreds of non-supernova candidates which must be vetted by human inspection before triggering additional followup. In comparison to simple threshold cuts, more sophisticated methods such as Boosted Decision Trees, Random Forests, and Support Vector Machines provide dramatically better object discrimination. At the Nearby Supernova Factory, we reduced the number of non-supernova candidates by a factor of 10 while increasing our supernova identification efficiency. Methods such as these will be crucial for maintaining a reasonable false positive rate in the automated transient alert pipelines of upcoming projects such as PanSTARRS and LSST.Comment: 25 pages; 6 figures; submitted to Ap

    Classification hardness for supervised learners on 20 years of intrusion detection data

    Get PDF
    This article consolidates analysis of established (NSL-KDD) and new intrusion detection datasets (ISCXIDS2012, CICIDS2017, CICIDS2018) through the use of supervised machine learning (ML) algorithms. The uniformity in analysis procedure opens up the option to compare the obtained results. It also provides a stronger foundation for the conclusions about the efficacy of supervised learners on the main classification task in network security. This research is motivated in part to address the lack of adoption of these modern datasets. Starting with a broad scope that includes classification by algorithms from different families on both established and new datasets has been done to expand the existing foundation and reveal the most opportune avenues for further inquiry. After obtaining baseline results, the classification task was increased in difficulty, by reducing the available data to learn from, both horizontally and vertically. The data reduction has been included as a stress-test to verify if the very high baseline results hold up under increasingly harsh constraints. Ultimately, this work contains the most comprehensive set of results on the topic of intrusion detection through supervised machine learning. Researchers working on algorithmic improvements can compare their results to this collection, knowing that all results reported here were gathered through a uniform framework. This work's main contributions are the outstanding classification results on the current state of the art datasets for intrusion detection and the conclusion that these methods show remarkable resilience in classification performance even when aggressively reducing the amount of data to learn from

    Online learning and detection of faces with low human supervision

    Get PDF
    The final publication is available at link.springer.comWe present an efficient,online,and interactive approach for computing a classifier, called Wild Lady Ferns (WiLFs), for face learning and detection using small human supervision. More precisely, on the one hand, WiLFs combine online boosting and extremely randomized trees (Random Ferns) to compute progressively an efficient and discriminative classifier. On the other hand, WiLFs use an interactive human-machine approach that combines two complementary learning strategies to reduce considerably the degree of human supervision during learning. While the first strategy corresponds to query-by-boosting active learning, that requests human assistance over difficult samples in function of the classifier confidence, the second strategy refers to a memory-based learning which uses ¿ Exemplar-based Nearest Neighbors (¿ENN) to assist automatically the classifier. A pre-trained Convolutional Neural Network (CNN) is used to perform ¿ENN with high-level feature descriptors. The proposed approach is therefore fast (WilFs run in 1 FPS using a code not fully optimized), accurate (we obtain detection rates over 82% in complex datasets), and labor-saving (human assistance percentages of less than 20%). As a byproduct, we demonstrate that WiLFs also perform semi-automatic annotation during learning, as while the classifier is being computed, WiLFs are discovering faces instances in input images which are used subsequently for training online the classifier. The advantages of our approach are demonstrated in synthetic and publicly available databases, showing comparable detection rates as offline approaches that require larger amounts of handmade training data.Peer ReviewedPostprint (author's final draft

    Effective classifiers for detecting objects

    Get PDF
    Several state-of-the-art machine learning classifiers are compared for the purposes of object detection in complex images, using global image features derived from the Ohta color space and Local Binary Patterns. Image complexity in this sense refers to the degree to which the target objects are occluded and/or non-dominant (i.e. not in the foreground) in the image, and also the degree to which the images are cluttered with non-target objects. The results indicate that a voting ensemble of Support Vector Machines, Random Forests, and Boosted Decision Trees provide the best performance with AUC values of up to 0.92 and Equal Error Rate accuracies of up to 85.7% in stratified 10-fold cross validation experiments on the GRAZ02 complex image dataset

    Accelerated face detector training using the PSL framework

    Get PDF
    We train a face detection system using the PSL framework [1] which combines the AdaBoost learning algorithm and Haar-like features. We demonstrate the ability of this framework to overcome some of the challenges inherent in training classifiers that are structured in cascades of boosted ensembles (CoBE). The PSL classifiers are compared to the Viola-Jones type cas- caded classifiers. We establish the ability of the PSL framework to produce classifiers in a complex domain in significantly reduced time frame. They also comprise of fewer boosted en- sembles albeit at a price of increased false detection rates on our test dataset. We also report on results from a more diverse number of experiments carried out on the PSL framework in order to shed more insight into the effects of variations in its adjustable training parameters
    corecore