2,265 research outputs found

    Dir-MUSIC Algorithm for DOA Estimation of Partial Discharge Based on Signal Strength represented by Antenna Gain Array Manifold

    Full text link
    Inspection robots are widely used in the field of smart grid monitoring in substations, and partial discharge (PD) is an important sign of the insulation state of equipments. PD direction of arrival (DOA) algorithms using conventional beamforming and time difference of arrival (TDOA) require large-scale antenna arrays and high computational complexity, which make them difficult to implement on inspection robots. To address this problem, a novel directional multiple signal classification (Dir-MUSIC) algorithm for PD direction finding based on signal strength is proposed, and a miniaturized directional spiral antenna circular array is designed in this paper. First, the Dir-MUSIC algorithm is derived based on the array manifold characteristics. This method uses strength intensity information rather than the TDOA information, which could reduce the computational difficulty and the requirement of array size. Second, the effects of signal-to-noise ratio (SNR) and array manifold error on the performance of the algorithm are discussed through simulations in detail. Then according to the positioning requirements, the antenna array and its arrangement are developed, optimized, and simulation results suggested that the algorithm has reliable direction-finding performance in the form of 6 elements. Finally, the effectiveness of the algorithm is tested by using the designed spiral circular array in real scenarios. The experimental results show that the PD direction-finding error is 3.39{\deg}, which can meet the need for Partial discharge DOA estimation using inspection robots in substations.Comment: 8 pages,13 figures,24 reference

    Model Order Selection in DoA Scenarios via Cross-Entropy based Machine Learning Techniques

    Full text link
    In this paper, we present a machine learning approach for estimating the number of incident wavefronts in a direction of arrival scenario. In contrast to previous works, a multilayer neural network with a cross-entropy objective is trained. Furthermore, we investigate an online training procedure that allows an adaption of the neural network to imperfections of an antenna array without explicitly calibrating the array manifold. We show via simulations that the proposed method outperforms classical model order selection schemes based on information criteria in terms of accuracy, especially for a small number of snapshots and at low signal-to-noise-ratios. Also, the online training procedure enables the neural network to adapt with only a few online training samples, if initialized by offline training on artificial data

    Power-Based Direction-of-Arrival Estimation Using a Single Multi-Mode Antenna

    Full text link
    Phased antenna arrays are widely used for direction-of-arrival (DoA) estimation. For low-cost applications, signal power or received signal strength indicator (RSSI) based approaches can be an alternative. However, they usually require multiple antennas, a single antenna that can be rotated, or switchable antenna beams. In this paper we show how a multi-mode antenna (MMA) can be used for power-based DoA estimation. Only a single MMA is needed and neither rotation nor switching of antenna beams is required. We derive an estimation scheme as well as theoretical bounds and validate them through simulations. It is found that power-based DoA estimation with an MMA is feasible and accurate
    • …
    corecore