109 research outputs found

    Comparing Learned Representations between Unpruned and Pruned Deep Convolutional Neural Networks

    Get PDF
    While deep neural networks have shown impressive performance in computer vision tasks, natural language processing, and other domains, the sizes and inference times of these models can often prevent them from being used on resource-constrained systems. Furthermore, as these networks grow larger in size and complexity, it can become even harder to understand the learned representations of the input data that these networks form through training. These issues of growing network size, increasing complexity and runtime, and ambiguity in the understanding of internal representations serve as guiding points for this work. In this thesis, we create a neural network that is capable of predicting up to three path waypoints given an input image. This network will be used in conjunction with other networks to help guide an autonomous robotic vehicle. Since this neural network will be deployed to an embedded system, it is important that our network is efficient. As such, we use a network compression technique known as L1 norm pruning to reduce the size of the network and speed up the inference time, while retaining similar loss. Furthermore, we investigate the effects that pruning has on the internal learned representations of models by comparing unpruned and pruned network layers using projection weighted canonical correlation analysis (PWCCA). Our results show that for deep convolutional neural networks (CNN), PWCCA similarity scores between early convolutional layers start low and then gradually increase towards the final layers of the network, with some peaks in the intermediate layers. We also show that for our deep CNN, linear layers at the end of the network also exhibit very high similarity, serving to guide the dissimilar representations from intermediate convolutional layers to a common representation that yields similar network performance between unpruned and pruned networks

    Data-free parameter pruning for Deep Neural Networks

    Full text link
    Deep Neural nets (NNs) with millions of parameters are at the heart of many state-of-the-art computer vision systems today. However, recent works have shown that much smaller models can achieve similar levels of performance. In this work, we address the problem of pruning parameters in a trained NN model. Instead of removing individual weights one at a time as done in previous works, we remove one neuron at a time. We show how similar neurons are redundant, and propose a systematic way to remove them. Our experiments in pruning the densely connected layers show that we can remove upto 85\% of the total parameters in an MNIST-trained network, and about 35\% for AlexNet without significantly affecting performance. Our method can be applied on top of most networks with a fully connected layer to give a smaller network.Comment: BMVC 201

    Randomly Initialized Subnetworks with Iterative Weight Recycling

    Full text link
    The Multi-Prize Lottery Ticket Hypothesis posits that randomly initialized neural networks contain several subnetworks that achieve comparable accuracy to fully trained models of the same architecture. However, current methods require that the network is sufficiently overparameterized. In this work, we propose a modification to two state-of-the-art algorithms (Edge-Popup and Biprop) that finds high-accuracy subnetworks with no additional storage cost or scaling. The algorithm, Iterative Weight Recycling, identifies subsets of important weights within a randomly initialized network for intra-layer reuse. Empirically we show improvements on smaller network architectures and higher prune rates, finding that model sparsity can be increased through the "recycling" of existing weights. In addition to Iterative Weight Recycling, we complement the Multi-Prize Lottery Ticket Hypothesis with a reciprocal finding: high-accuracy, randomly initialized subnetwork's produce diverse masks, despite being generated with the same hyperparameter's and pruning strategy. We explore the landscapes of these masks, which show high variability

    Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0.

    Get PDF
    COVLIAS 1.0: an automated lung segmentation was designed for COVID-19 diagnosis. It has issues related to storage space and speed. This study shows that COVLIAS 2.0 uses pruned AI (PAI) networks for improving both storage and speed, wiliest high performance on lung segmentation and lesion localization.ology: The proposed study uses multicenter ∼9,000 CT slices from two different nations, namely, CroMed from Croatia (80 patients, experimental data), and NovMed from Italy (72 patients, validation data). We hypothesize that by using pruning and evolutionary optimization algorithms, the size of the AI models can be reduced significantly, ensuring optimal performance. Eight different pruning techniques (i) differential evolution (DE), (ii) genetic algorithm (GA), (iii) particle swarm optimization algorithm (PSO), and (iv) whale optimization algorithm (WO) in two deep learning frameworks (i) Fully connected network (FCN) and (ii) SegNet were designed. COVLIAS 2.0 was validated using "Unseen NovMed" and benchmarked against MedSeg. Statistical tests for stability and reliability were also conducted.Pruning algorithms (i) FCN-DE, (ii) FCN-GA, (iii) FCN-PSO, and (iv) FCN-WO showed improvement in storage by 92.4%, 95.3%, 98.7%, and 99.8% respectively when compared against solo FCN, and (v) SegNet-DE, (vi) SegNet-GA, (vii) SegNet-PSO, and (viii) SegNet-WO showed improvement by 97.1%, 97.9%, 98.8%, and 99.2% respectively when compared against solo SegNet. AUC > 0.94 (p 0.86 (p < 0.0001) on NovMed data set for all eight EA model. PAI <0.25 s per image. DenseNet-121-based Grad-CAM heatmaps showed validation on glass ground opacity lesions.Eight PAI networks that were successfully validated are five times faster, storage efficient, and could be used in clinical settings
    • …
    corecore