43,340 research outputs found

    Shortest Co-cycle Bases of Graphs

    Get PDF
    In this paper we investigate the structure of the shortest co-cycle base(or SCB in short) of connected graphs, which are related with map geometries, i.e., Smarandache 2-dimensional manifolds. By using a Hall type theorem for base transformation, we show that the shortest co-cycle bases have the same structure (there is a 1-1 correspondence between two shortest co-cycle bases such that the corresponding elements have the same length). As an application in surface topology, we show that in an embedded graph on a surface any nonseparating cycle can’t be generated by separating cycles. Based on this result, we show that in a 2-connected graph embedded in a surface, there is a set of surface nonseparating cycles which can span the cycle space. In particular, there is a shortest base consisting surface nonseparating cycle and all such bases have the same structure. This extends a Tutte’s result

    All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs

    Get PDF
    For an undirected nn-vertex graph GG with non-negative edge-weights, we consider the following type of query: given two vertices ss and tt in GG, what is the weight of a minimum stst-cut in GG? We solve this problem in preprocessing time O(nlog3n)O(n\log^3 n) for graphs of bounded genus, giving the first sub-quadratic time algorithm for this class of graphs. Our result also improves by a logarithmic factor a previous algorithm by Borradaile, Sankowski and Wulff-Nilsen (FOCS 2010) that applied only to planar graphs. Our algorithm constructs a Gomory-Hu tree for the given graph, providing a data structure with space O(n)O(n) that can answer minimum-cut queries in constant time. The dependence on the genus of the input graph in our preprocessing time is 2O(g2)2^{O(g^2)}

    The Complexity of Separating Points in the Plane

    Get PDF
    We study the following separation problem: given n connected curves and two points s and t in the plane, compute the minimum number of curves one needs to retain so that any path connecting s to t intersects some of the retained curves. We give the first polynomial (O(n3)) time algorithm for the problem, assuming that the curves have reasonable computational properties. The algorithm is based on considering the intersection graph of the curves, defining an appropriate family of closed walks in the intersection graph that satisfies the 3-path-condition, and arguing that a shortest cycle in the family gives an optimal solution. The 3-path-condition has been used mainly in topological graph theory, and thus its use here makes the connection to topology clear. We also show that the generalized version, where several input points are to be separated, is NP-hard for natural families of curves, like segments in two directions or unit circles

    List precoloring extension in planar graphs

    Full text link
    A celebrated result of Thomassen states that not only can every planar graph be colored properly with five colors, but no matter how arbitrary palettes of five colors are assigned to vertices, one can choose a color from the corresponding palette for each vertex so that the resulting coloring is proper. This result is referred to as 5-choosability of planar graphs. Albertson asked whether Thomassen's theorem can be extended by precoloring some vertices which are at a large enough distance apart in a graph. Here, among others, we answer the question in the case when the graph does not contain short cycles separating precolored vertices and when there is a "wide" Steiner tree containing all the precolored vertices.Comment: v2: 15 pages, 11 figres, corrected typos and new proof of Theorem 3(2

    Short Separating Geodesics for Multiply Connected Domains

    Full text link
    We consider the following questions: given a hyperbolic plane domain and a separation of its complement into two disjoint closed sets each of which contains at least two points, what is the shortest closed hyperbolic geodesic which separates these sets and is it a simple closed curve? We show that a shortest curve always exists although in general it may not be simple. However, one can also always find a shortest simple curve and we call such a geodesic a \emph{meridian} of the domain. Meridians generalize to domains of higher connectivity the notion of the equator of an annulus as the shortest geodesic which separates the complement. We show that although they are not in general uniquely defined, if one of the sets of the separation of the complement is connected, then they are unique and are also the shortest possible closed curves which separate the complement in this fashion.Comment: 20 Pages, 3 Figure

    Single Source - All Sinks Max Flows in Planar Digraphs

    Full text link
    Let G = (V,E) be a planar n-vertex digraph. Consider the problem of computing max st-flow values in G from a fixed source s to all sinks t in V\{s}. We show how to solve this problem in near-linear O(n log^3 n) time. Previously, no better solution was known than running a single-source single-sink max flow algorithm n-1 times, giving a total time bound of O(n^2 log n) with the algorithm of Borradaile and Klein. An important implication is that all-pairs max st-flow values in G can be computed in near-quadratic time. This is close to optimal as the output size is Theta(n^2). We give a quadratic lower bound on the number of distinct max flow values and an Omega(n^3) lower bound for the total size of all min cut-sets. This distinguishes the problem from the undirected case where the number of distinct max flow values is O(n). Previous to our result, no algorithm which could solve the all-pairs max flow values problem faster than the time of Theta(n^2) max-flow computations for every planar digraph was known. This result is accompanied with a data structure that reports min cut-sets. For fixed s and all t, after O(n^{3/2} log^{3/2} n) preprocessing time, it can report the set of arcs C crossing a min st-cut in time roughly proportional to the size of C.Comment: 25 pages, 4 figures; extended abstract appeared in FOCS 201
    corecore