7,754 research outputs found

    The Cycle Spectrum of Claw-free Hamiltonian Graphs

    Full text link
    If GG is a claw-free hamiltonian graph of order nn and maximum degree Δ\Delta with Δ24\Delta\geq 24, then GG has cycles of at least min{n,32Δ}2\min\left\{ n,\left\lceil\frac{3}{2}\Delta\right\rceil\right\}-2 many different lengths.Comment: 9 page

    Hamiltonicity, independence number, and pancyclicity

    Get PDF
    A graph on n vertices is called pancyclic if it contains a cycle of length l for all 3 \le l \le n. In 1972, Erdos proved that if G is a Hamiltonian graph on n > 4k^4 vertices with independence number k, then G is pancyclic. He then suggested that n = \Omega(k^2) should already be enough to guarantee pancyclicity. Improving on his and some other later results, we prove that there exists a constant c such that n > ck^{7/3} suffices

    The Complexity of Routing with Few Collisions

    Full text link
    We study the computational complexity of routing multiple objects through a network in such a way that only few collisions occur: Given a graph GG with two distinct terminal vertices and two positive integers pp and kk, the question is whether one can connect the terminals by at least pp routes (e.g. paths) such that at most kk edges are time-wise shared among them. We study three types of routes: traverse each vertex at most once (paths), each edge at most once (trails), or no such restrictions (walks). We prove that for paths and trails the problem is NP-complete on undirected and directed graphs even if kk is constant or the maximum vertex degree in the input graph is constant. For walks, however, it is solvable in polynomial time on undirected graphs for arbitrary kk and on directed graphs if kk is constant. We additionally study for all route types a variant of the problem where the maximum length of a route is restricted by some given upper bound. We prove that this length-restricted variant has the same complexity classification with respect to paths and trails, but for walks it becomes NP-complete on undirected graphs

    Matchings and Hamilton Cycles with Constraints on Sets of Edges

    Full text link
    The aim of this paper is to extend and generalise some work of Katona on the existence of perfect matchings or Hamilton cycles in graphs subject to certain constraints. The most general form of these constraints is that we are given a family of sets of edges of our graph and are not allowed to use all the edges of any member of this family. We consider two natural ways of expressing constraints of this kind using graphs and using set systems. For the first version we ask for conditions on regular bipartite graphs GG and HH for there to exist a perfect matching in GG, no two edges of which form a 44-cycle with two edges of HH. In the second, we ask for conditions under which a Hamilton cycle in the complete graph (or equivalently a cyclic permutation) exists, with the property that it has no collection of intervals of prescribed lengths whose union is an element of a given family of sets. For instance we prove that the smallest family of 44-sets with the property that every cyclic permutation of an nn-set contains two adjacent pairs of points has size between (1/9+o(1))n2(1/9+o(1))n^2 and (1/2o(1))n2(1/2-o(1))n^2. We also give bounds on the general version of this problem and on other natural special cases. We finish by raising numerous open problems and directions for further study.Comment: 21 page
    corecore