596 research outputs found

    Distributed memory compiler methods for irregular problems: Data copy reuse and runtime partitioning

    Get PDF
    Outlined here are two methods which we believe will play an important role in any distributed memory compiler able to handle sparse and unstructured problems. We describe how to link runtime partitioners to distributed memory compilers. In our scheme, programmers can implicitly specify how data and loop iterations are to be distributed between processors. This insulates users from having to deal explicitly with potentially complex algorithms that carry out work and data partitioning. We also describe a viable mechanism for tracking and reusing copies of off-processor data. In many programs, several loops access the same off-processor memory locations. As long as it can be verified that the values assigned to off-processor memory locations remain unmodified, we show that we can effectively reuse stored off-processor data. We present experimental data from a 3-D unstructured Euler solver run on iPSC/860 to demonstrate the usefulness of our methods

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure

    Static Analysis for Discovering Security Vulnerabilities in Web Applications on the Asp.Net Platform

    Get PDF
    Tato bakalářská práce popisuje jak teoretické základy, tak způsob vytvoření statického analyzátoru založeném na platformě .NET Framework a službách poskytnutých prostřednictvím .NET Compiler Platform. Tento analyzátor detekuje bezpečnostní slabiny typu SQL injection na platformě ASP.NET MVC. Analyzátor nejdříve sestrojuje grafy řízení toku jako abstraktní reprezentaci analyzovaného programu. Poté využívá statické analýzy pro sledování potenciálně nedůvěryhodných dat. Nakonec jsou výsledky analýzy prezentovány uživateli.This Bachelor thesis is intended to describe theoretical foundations as well as the construction of a static taint analyser based on the .NET Framework and the analysis services provided by the .NET Compiler Platform. This analyser detects SQL injection security vulnerabilities on the ASP.NET MVC platform. Firstly, the analyser constructs control flow graphs as an abstract representation of the analysed program. Then, it uses a static taint analysis to track potentially distrusted and tainted data values. Finally, analysis results are presented to the user.

    RacerD: compositional static race detection

    Get PDF
    Automatic static detection of data races is one of the most basic problems in reasoning about concurrency. We present RacerD—a static program analysis for detecting data races in Java programs which is fast, can scale to large code, and has proven effective in an industrial software engineering scenario. To our knowledge, RacerD is the first inter-procedural, compositional data race detector which has been empirically shown to have non-trivial precision and impact. Due to its compositionality, it can analyze code changes quickly, and this allows it to perform continuous reasoning about a large, rapidly changing codebase as part of deployment within a continuous integration ecosystem. In contrast to previous static race detectors, its design favors reporting high-confidence bugs over ensuring their absence. RacerD has been in deployment for over a year at Facebook, where it has flagged over 2500 issues that have been fixed by developers before reaching production. It has been important in enabling the development of new code as well as fixing old code: it helped support the conversion of part of the main Facebook Android app from a single-threaded to a multi-threaded architecture. In this paper we describe RacerD’s design, implementation, deployment and impact

    A survey of program slicing techniques

    Get PDF

    From Formal Semantics to Verified Slicing : A Modular Framework with Applications in Language Based Security

    Get PDF
    This book presents a modular framework for slicing in the proof assistant Isabelle/HOL which is based on abstract control flow graphs. Building on such abstract structures renders the correctness results language-independent. To prove that they hold for a specific language, it remains to instantiate the framework with this language, which requires a formal semantics of this language in Isabelle/HOL. We show that formal semantics even for sophisticated high-level languages are realizable

    Safety verification of asynchronous pushdown systems with shaped stacks

    Full text link
    In this paper, we study the program-point reachability problem of concurrent pushdown systems that communicate via unbounded and unordered message buffers. Our goal is to relax the common restriction that messages can only be retrieved by a pushdown process when its stack is empty. We use the notion of partially commutative context-free grammars to describe a new class of asynchronously communicating pushdown systems with a mild shape constraint on the stacks for which the program-point coverability problem remains decidable. Stacks that fit the shape constraint may reach arbitrary heights; further a process may execute any communication action (be it process creation, message send or retrieval) whether or not its stack is empty. This class extends previous computational models studied in the context of asynchronous programs, and enables the safety verification of a large class of message passing programs
    corecore