4,057 research outputs found

    A composition theorem for the Fourier Entropy-Influence conjecture

    Full text link
    The Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai [FK96] seeks to relate two fundamental measures of Boolean function complexity: it states that H[f]CInf[f]H[f] \leq C Inf[f] holds for every Boolean function ff, where H[f]H[f] denotes the spectral entropy of ff, Inf[f]Inf[f] is its total influence, and C>0C > 0 is a universal constant. Despite significant interest in the conjecture it has only been shown to hold for a few classes of Boolean functions. Our main result is a composition theorem for the FEI conjecture. We show that if g1,...,gkg_1,...,g_k are functions over disjoint sets of variables satisfying the conjecture, and if the Fourier transform of FF taken with respect to the product distribution with biases E[g1],...,E[gk]E[g_1],...,E[g_k] satisfies the conjecture, then their composition F(g1(x1),...,gk(xk))F(g_1(x^1),...,g_k(x^k)) satisfies the conjecture. As an application we show that the FEI conjecture holds for read-once formulas over arbitrary gates of bounded arity, extending a recent result [OWZ11] which proved it for read-once decision trees. Our techniques also yield an explicit function with the largest known ratio of C6.278C \geq 6.278 between H[f]H[f] and Inf[f]Inf[f], improving on the previous lower bound of 4.615

    DNF Sparsification and a Faster Deterministic Counting Algorithm

    Full text link
    Given a DNF formula on n variables, the two natural size measures are the number of terms or size s(f), and the maximum width of a term w(f). It is folklore that short DNF formulas can be made narrow. We prove a converse, showing that narrow formulas can be sparsified. More precisely, any width w DNF irrespective of its size can be ϵ\epsilon-approximated by a width ww DNF with at most (wlog(1/ϵ))O(w)(w\log(1/\epsilon))^{O(w)} terms. We combine our sparsification result with the work of Luby and Velikovic to give a faster deterministic algorithm for approximately counting the number of satisfying solutions to a DNF. Given a formula on n variables with poly(n) terms, we give a deterministic nO~(loglog(n))n^{\tilde{O}(\log \log(n))} time algorithm that computes an additive ϵ\epsilon approximation to the fraction of satisfying assignments of f for \epsilon = 1/\poly(\log n). The previous best result due to Luby and Velickovic from nearly two decades ago had a run-time of nexp(O(loglogn))n^{\exp(O(\sqrt{\log \log n}))}.Comment: To appear in the IEEE Conference on Computational Complexity, 201
    corecore