755 research outputs found

    On the Sensitivity Complexity of k-Uniform Hypergraph Properties

    Get PDF
    In this paper we investigate the sensitivity complexity of hypergraph properties. We present a k-uniform hypergraph property with sensitivity complexity O(n^{ceil(k/3)}) for any k >= 3, where n is the number of vertices. Moreover, we can do better when k = 1 (mod 3) by presenting a k-uniform hypergraph property with sensitivity O(n^{ceil(k/3)-1/2}). This result disproves a conjecture of Babai, which conjectures that the sensitivity complexity of k-uniform hypergraph properties is at least Omega(n^{k/2}). We also investigate the sensitivity complexity of other weakly symmetric functions and show that for many classes of transitive-invariant Boolean functions the minimum achievable sensitivity complexity can be O(N^{1/3}), where N is the number of variables. Finally, we give a lower bound for sensitivity of k-uniform hypergraph properties, which implies the sensitivity conjecture of k-uniform hypergraph properties for any constant k

    Rainbow Coloring Hardness via Low Sensitivity Polymorphisms

    Get PDF
    A k-uniform hypergraph is said to be r-rainbow colorable if there is an r-coloring of its vertices such that every hyperedge intersects all r color classes. Given as input such a hypergraph, finding a r-rainbow coloring of it is NP-hard for all k >= 3 and r >= 2. Therefore, one settles for finding a rainbow coloring with fewer colors (which is an easier task). When r=k (the maximum possible value), i.e., the hypergraph is k-partite, one can efficiently 2-rainbow color the hypergraph, i.e., 2-color its vertices so that there are no monochromatic edges. In this work we consider the next smaller value of r=k-1, and prove that in this case it is NP-hard to rainbow color the hypergraph with q := ceil[(k-2)/2] colors. In particular, for k <=6, it is NP-hard to 2-color (k-1)-rainbow colorable k-uniform hypergraphs. Our proof follows the algebraic approach to promise constraint satisfaction problems. It proceeds by characterizing the polymorphisms associated with the approximate rainbow coloring problem, which are rainbow colorings of some product hypergraphs on vertex set [r]^n. We prove that any such polymorphism f: [r]^n -> [q] must be C-fixing, i.e., there is a small subset S of C coordinates and a setting a in [q]^S such that fixing x_{|S} = a determines the value of f(x). The key step in our proof is bounding the sensitivity of certain rainbow colorings, thereby arguing that they must be juntas. Armed with the C-fixing characterization, our NP-hardness is obtained via a reduction from smooth Label Cover
    • …
    corecore