83 research outputs found

    Answering SPARQL queries modulo RDF Schema with paths

    Get PDF
    SPARQL is the standard query language for RDF graphs. In its strict instantiation, it only offers querying according to the RDF semantics and would thus ignore the semantics of data expressed with respect to (RDF) schemas or (OWL) ontologies. Several extensions to SPARQL have been proposed to query RDF data modulo RDFS, i.e., interpreting the query with RDFS semantics and/or considering external ontologies. We introduce a general framework which allows for expressing query answering modulo a particular semantics in an homogeneous way. In this paper, we discuss extensions of SPARQL that use regular expressions to navigate RDF graphs and may be used to answer queries considering RDFS semantics. We also consider their embedding as extensions of SPARQL. These SPARQL extensions are interpreted within the proposed framework and their drawbacks are presented. In particular, we show that the PSPARQL query language, a strict extension of SPARQL offering transitive closure, allows for answering SPARQL queries modulo RDFS graphs with the same complexity as SPARQL through a simple transformation of the queries. We also consider languages which, in addition to paths, provide constraints. In particular, we present and compare nSPARQL and our proposal CPSPARQL. We show that CPSPARQL is expressive enough to answer full SPARQL queries modulo RDFS. Finally, we compare the expressiveness and complexity of both nSPARQL and the corresponding fragment of CPSPARQL, that we call cpSPARQL. We show that both languages have the same complexity through cpSPARQL, being a proper extension of SPARQL graph patterns, is more expressive than nSPARQL.Comment: RR-8394; alkhateeb2003

    CONSTRUCT Queries in SPARQL

    Get PDF
    SPARQL has become the most popular language for querying RDF datasets, the standard data model for representing information in the Web. This query language has received a good deal of attention in the last few years: two versions of W3C standards have been issued, several SPARQL query engines have been deployed, and important theoretical foundations have been laid. However, many fundamental aspects of SPARQL queries are not yet fully understood. To this end, it is crucial to understand the correspondence between SPARQL and well-developed frameworks like relational algebra or first order logic. But one of the main obstacles on the way to such understanding is the fact that the well-studied fragments of SPARQL do not produce RDF as output. In this paper we embark on the study of SPARQL CONSTRUCT queries, that is, queries which output RDF graphs. This class of queries takes rightful place in the standards and implementations, but contrary to SELECT queries, it has not yet attracted a worth-while theoretical research. Under this framework we are able to establish a strong connection between SPARQL and well-known logical and database formalisms. In particular, the fragment which does not allow for blank nodes in output templates corresponds to first order queries, its well-designed sub-fragment corresponds to positive first order queries, and the general language can be re-stated as a data exchange setting. These correspondences allow us to conclude that the general language is not composable, but the aforementioned blank-free fragments are. Finally, we enrich SPARQL with a recursion operator and establish fundamental properties of this extension

    A General Framework for Representing, Reasoning and Querying with Annotated Semantic Web Data

    Full text link
    We describe a generic framework for representing and reasoning with annotated Semantic Web data, a task becoming more important with the recent increased amount of inconsistent and non-reliable meta-data on the web. We formalise the annotated language, the corresponding deductive system and address the query answering problem. Previous contributions on specific RDF annotation domains are encompassed by our unified reasoning formalism as we show by instantiating it on (i) temporal, (ii) fuzzy, and (iii) provenance annotations. Moreover, we provide a generic method for combining multiple annotation domains allowing to represent, e.g. temporally-annotated fuzzy RDF. Furthermore, we address the development of a query language -- AnQL -- that is inspired by SPARQL, including several features of SPARQL 1.1 (subqueries, aggregates, assignment, solution modifiers) along with the formal definitions of their semantics

    SPARQL Update for Materialised Triple Stores under DL-Lite RDFS Entailment

    Get PDF
    Abstract. Updates in RDF stores have recently been standardised in the SPARQL 1.1 Update specification. However, computing answers entailed by ontologies in triple stores is usually treated orthogonally to updates. Even W3C’s SPARQL 1.1 Update language and SPARQL 1.1 Entailment Regimes specifications explicitly exclude a standard behaviour for entailment regimes other than simple entailment in the context of updates. In this paper, we take a first step to close this gap. We define a fragment of SPARQL basic graph patterns corresponding to (the RDFS fragment of) DL-Lite and the corresponding SPARQL update language, dealing with updates both of ABox and of TBox statements. We discuss possible semantics along with potential strategies for implementing them. Particularly, we treat materialised RDF stores, which store all entailed triples explicitly, and preservation of materialisation upon ABox and TBox updates.

    SPARQL++ for mapping between RDF vocabularies

    Get PDF
    Abstract. Lightweight ontologies in the form of RDF vocabularies such as SIOC, FOAF, vCard, etc. are increasingly being used and exported by “serious ” applications recently. Such vocabularies, together with query languages like SPARQL also allow to syndicate resulting RDF data from arbitrary Web sources and open the path to finally bringing the Semantic Web to operation mode. Considering, however, that many of the promoted lightweight ontologies overlap, the lack of suitable standards to describe these overlaps in a declarative fashion becomes evident. In this paper we argue that one does not necessarily need to delve into the huge body of research on ontology mapping for a solution, but SPARQL itself might — with extensions such as external functions and aggregates — serve as a basis for declaratively describing ontology mappings. We provide the semantic foundations and a path towards implementation for such a mapping language by means of a translation to Datalog with external predicates

    Schema Query Containment

    Get PDF
    SPARQL is a schema query language allowing access to the TBox part of a knowledge base. Moreover its entailment regimes enable to take into account knowledge inferred from persistently stored knowledge bases in the query answering process. Thus, the emergence of SPARQL entailment regimes provide a new perspective for the containment problem. As one has to deal with axiomatic triples, datatype reasoning, and blank nodes that result in infinite answers. Of particular interest for us is the union of conjunctive queries that are a core fragment of SPARQL. In this paper, we study the containment of such queries based on the OWL-ALCH Direct and RDF-Based Semantics entailment regimes

    Answering SPARQL queries over databases under OWL 2 QL entailment regime

    Get PDF
    We present an extension of the ontology-based data access platform Ontop that supports answering SPARQL queries under the OWL 2 QL direct semantics entailment regime for data instances stored in relational databases. On the theoretical side, we show how any input SPARQL query, OWL 2 QL ontology and R2RML mappings can be rewritten to an equivalent SQL query solely over the data. On the practical side, we present initial experimental results demonstrating that by applying the Ontop technologies—the tree-witness query rewriting, T-mappings compiling R2RML mappings with ontology hierarchies, and T-mapping optimisations using SQL expressivity and database integrity constraints—the system produces scalable SQL queries

    A GeoSPARQL Compliance Benchmark

    Full text link
    We propose a series of tests that check for the compliance of RDF triplestores with the GeoSPARQL standard. The purpose of the benchmark is to test how many of the requirements outlined in the standard a tested system supports and to push triplestores forward in achieving a full GeoSPARQL compliance. This topic is of concern because the support of GeoSPARQL varies greatly between different triplestore implementations, and such support is of great importance for the domain of geospatial RDF data. Additionally, we present a comprehensive comparison of triplestores, providing an insight into their current GeoSPARQL support
    • …
    corecore