239 research outputs found

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table

    Use of Text Data in Identifying and Prioritizing Potential Drug Repositioning Candidates

    Get PDF
    New drug development costs between 500 million and 2 billion dollars and takes 10-15 years, with a success rate of less than 10%. Drug repurposing (defined as discovering new indications for existing drugs) could play a significant role in drug development, especially considering the declining success rates of developing novel drugs. In the period 2007-2009, drug repurposing led to the launching of 30-40% of new drugs. Typically, new indications for existing medications are identified by accident. However, new technologies and a large number of available resources enable the development of systematic approaches to identify and validate drug-repurposing candidates with significantly lower cost. A variety of resources have been utilized to identify novel drug repurposing candidates such as biomedical literature, clinical notes, and genetic data. In this dissertation, we focused on using text data in identifying and prioritizing drug repositioning candidates and conducted five studies. In the first study, we aimed to assess the feasibility of using patient reviews from social media to identify potential candidates for drug repurposing. We retrieved patient reviews of 180 medications from an online forum, WebMD. Using dictionary-based and machine learning approaches, we identified disease names in the reviews. Several publicly available resources were used to exclude comments containing known indications and adverse drug effects. After manually reviewing some of the remaining comments, we implemented a rule-based system to identify beneficial effects. The dictionary-based system and machine learning system identified 2178 and 6171 disease names respectively in 64,616 patient comments. We provided a list of 10 common patterns that patients used to report any beneficial effects or uses of medication. After manually reviewing the comments tagged by our rule-based system, we identified five potential drug repurposing candidates. To our knowledge, this was the first study to consider using social media data to identify drug-repurposing candidates. We found that even a rule-based system, with a limited number of rules, could identify beneficial effect mentions in the comments of patients. Our preliminary study shows that social media has the potential to be used in drug repurposing. In the second study, we investigated the significance of extracting information from multiple sentences specifically in the context of drug-disease relation discovery. We used multiple resources such as Semantic Medline, a literature-based resource, and Medline search (for filtering spurious results) and inferred 8,772 potential drug-disease pairs. Our analysis revealed that 6,450 (73.5%) of the 8,772 potential drug-disease relations did not occur in a single sentence. Moreover, only 537 of the drug-disease pairs matched the curated gold standard in the Comparative Toxicogenomics Database (CTD), a trusted resource for drug-disease relations. Among the 537, nearly 75% (407) of the drug-disease pairs occur in multiple sentences. Our analysis revealed that the drug-disease pairs inferred from Semantic Medline or retrieved from CTD could be extracted from multiple sentences in the literature. This highlights the significance of the need for discourse-level analysis in extracting the relations from biomedical literature. In the third and fourth study, we focused on prioritizing drug repositioning candidates extracted from biomedical literature which we refer to as Literature-Based Discovery (LBD). In the third study, we used drug-gene and gene-disease semantic predications extracted from Medline abstracts to generate a list of potential drug-disease pairs. We further ranked the generated pairs, by assigning scores based on the predicates that qualify drug-gene and gene-disease relationships. On comparing the top-ranked drug-disease pairs against the Comparative Toxicogenomics Database, we found that a significant percentage of top-ranked pairs appeared in CTD. Co-occurrence of these high-ranked pairs in Medline abstracts is then used to improve the rankings of the inferred drug-disease relations. Finally, manual evaluation of the top-ten pairs ranked by our approach revealed that nine of them have good potential for biological significance based on expert judgment. In the fourth study, we proposed a method, utilizing information surrounding causal findings, to prioritize discoveries generated by LBD systems. We focused on discovering drug-disease relations, which have the potential to identify drug repositioning candidates or adverse drug reactions. Our LBD system used drug-gene and gene-disease semantic predication in SemMedDB as causal findings and Swanson’s ABC model to generate potential drug-disease relations. Using sentences, as a source of causal findings, our ranking method trained a binary classifier to classify generated drug-disease relations into desired classes. We trained and tested our classifier for three different purposes: a) drug repositioning b) adverse drug-event detection and c) drug-disease relation detection. The classifier obtained 0.78, 0.86, and 0.83 F-measures respectively for these tasks. The number of causal findings of each hypothesis, which were classified as positive by the classifier, is the main metric for ranking hypotheses in the proposed method. To evaluate the ranking method, we counted and compared the number of true relations in the top 100 pairs, ranked by our method and one of the previous methods. Out of 181 true relations in the test dataset, the proposed method ranked 20 of them in the top 100 relations while this number was 13 for the other method. In the last study, we used biomedical literature and clinical trials in ranking potential drug repositioning candidates identified by Phenome-Wide Association Studies (PheWAS). Unlike previous approaches, in this study, we did not limit our method to LBD. First, we generated a list of potential drug repositioning candidates using PheWAS. We retrieved 212,851 gene-disease associations from PheWAS catalog and 14,169 gene-drug relationships from DrugBank. Following Swanson’s model, we generated 52,966 potential drug repositioning candidates. Then, we developed an information retrieval system to retrieve any evidence of those candidates co-occurring in the biomedical literature and clinical trials. We identified nearly 14,800 drug-disease pairs with some evidence of support. In addition, we identified more than 38,000 novel candidates for re-purposing, encompassing hundreds of different disease states and over 1,000 individual medications. We anticipate that these results will be highly useful for hypothesis generation in the field of drug repurposing

    Early Detection of Depression: Social Network Analysis and Random Forest Techniques

    Get PDF
    [Abstract] Background: Major depressive disorder (MDD) or depression is among the most prevalent psychiatric disorders, affecting more than 300 million people globally. Early detection is critical for rapid intervention, which can potentially reduce the escalation of the disorder. Objective: This study used data from social media networks to explore various methods of early detection of MDDs based on machine learning. We performed a thorough analysis of the dataset to characterize the subjects’ behavior based on different aspects of their writings: textual spreading, time gap, and time span. Methods: We proposed 2 different approaches based on machine learning singleton and dual. The former uses 1 random forest (RF) classifier with 2 threshold functions, whereas the latter uses 2 independent RF classifiers, one to detect depressed subjects and another to identify nondepressed individuals. In both cases, features are defined from textual, semantic, and writing similarities. Results: The evaluation follows a time-aware approach that rewards early detections and penalizes late detections. The results show how a dual model performs significantly better than the singleton model and is able to improve current state-of-the-art detection models by more than 10%. Conclusions: Given the results, we consider that this study can help in the development of new solutions to deal with the early detection of depression on social networks.Ministerio de Economía y Competitividad; TIN2015-70648-PXunta de Galicia; ED431G/01 2016-201

    Recognition and normalization of biomedical entities within clinical notes

    Get PDF
    Tese de mestrado, Engenharia Informática (Sistemas de Informação), Universidade de Lisboa, Faculdade de Ciências, 2015Os profissionais de saúde, como parte do seu trabalho, têm a obrigação de registar manualmente o seu conhecimento de forma não estruturada, sendo as notas clínicas um dos vários tipos de documentos gerados. As notas clínicas descrevem a situação clínica dos pacientes, contendo informação relativamente aos seus tratamentos, sintomas, doenças, diagnósticos, procedimentos, etc. A introdução desta informação em Electronic Health Records (EHRs) está a ser fortemente encorajada, originando um crescimento exponencial no volume de notas clínicas em formato digital. A disponibilização desta informação em formato digital oferece uma maior liberdade, permitindo uma fácil partilha das mesmas entre instituições médicas, acompanhando assim o percurso do paciente. Nas notas clínicas a informação é registada utilizando a língua natural desprovida de qualquer estruturação. O registo de informação de forma estruturada, apesar de ser recomendado, condiciona o trabalho dos profissionais de saúde. Tal imposição aumenta o tempo necessário para efetuar o registo do conhecimento assim como impõe limites na descrição de casos fora do comum. A aplicação de técnicas de prospeção de texto (text mining) aparece então como solução para o processamento automático da informação não estruturada permitindo a conversão num formato que permita os sistemas computacionais analisar. Dado que os profissionais médicos utilizam diferentes terminologias de acordo com o contexto e a respetiva especialização, o processamento de notas clínicas comporta vários desafios, dada a sua heterogeneidade, ambiguidade e necessidade contextual. São várias as técnicas de text mining utilizadas para resolver estes desafios, sendo neste trabalho exploradas técnicas de aprendizagem automática (Machine Learning), semelhança textual (Pattern Matching), conteúdo da informação (Information Content) e semelhança semântica (Semantic Similarity). O objetivo deste trabalho consiste no estudo e desenvolvimento de um sistema que permita reconhecer e normalizar entidades biomédicas em notas clínicas, assim como o desenvolvimento da respetiva interface. A tarefa de reconhecimento consiste em identificar entidades relevantes em notas clínicas, sendo que a normalização passa pela atribuição, a cada entidade reconhecida, de um identificador único pertencente a um vocabulário controlado. Para tal, o sistema desenvolvido utiliza técnicas de prospeção de texto e usa a ontologia SNOMED CT como vocabulário controlado. Utiliza ainda dois conjuntos de notas clínicas, um não anotado e outro anotado manualmente por profissionais de saúde. Este último conjunto é referido como conjunto de treino. O sistema foi desenvolvido usando uma arquitetura modular em pipeline, composta por dois módulos, recebendo como input um conjunto de notas clínicas não anotadas. A execução do sistema resulta na anotação automática, isto é, no reconhecimento e normalização das notas clínicas recebidas como input. O primeiro módulo é responsável pelo reconhecimento de entidades biomédicas. A estratégia usada consiste na aplicação de algoritmos de aprendizagem automática de forma a gerar um modelo de reconhecimento baseado em casos passados, isto é, notas clínicas manualmente anotadas. O software de aprendizagem automática Stanford NER foi utilizado para gerar modelos CRF (Conditional Random Field). Este módulo comporta dois processos: o de treino e o de execução. No processo de treino, cada palavra (ou token) existente nas notas clínicas é caracterizada com base num conjunto de propriedades entre as quais: Brown clusters, formato do token, vizinhança e léxicos pertencentes a vários domínios. A caracterização de cada token permite que estes sejam representados junto do algoritmo de aprendizagem automática. Este trabalho utilizou o inovador modelo de segmentação SBIEON, permitindo a identificação de entidades não contínuas. O algoritmo de aprendizagem automática vai gerar um modelo de reconhecimento baseado nas propriedades associadas a cada token. O modelo de reconhecimento gerado permite identificar entidades em novas notas clínicas Não anotadas, associando a cada token existente nas respectivas notas clínicas, uma classe pertencente ao modelo de segmentação escolhido. As entidades relevantes são compostas por tokens que tenham sido associados a uma classe relevante. O segundo módulo do sistema é responsável pela normalização das entidades identificadas pelo módulo de reconhecimento como sendo relevantes. Uma arquitetura modular em pipeline é utilizada, sendo cada componente responsável pela normalização de um conjunto restrito de entidades pertencentes a um determinado dicionário. Um total de cinco dicionários são gerados baseados nas notas clínicas de treino (abreviações não ambíguas, entidades não ambíguas e entidades ambíguas) e na ontologia SNOMED CT (entidades ambíguas e não ambíguas). Os primeiros três componentes normalizam as entidades não ambíguos utilizando uma pesquisa de dicionário. A entidade a normalizar é procurada nos dicionários não ambíguos, e caso seja encontrada uma correspondência, o respetivo identificador e associado. O primeiro componente utiliza o dicionário de abreviações, o segundo o dicionário de notas clinicas de treino não ambíguo e o terceiro o dicionário SNOMED CT não ambíguo. O quarto e quinto componente normalizam entidades ambíguas pertencentes às notas clínicas de treino e ao SNOMED CT respetivamente. Em ambos, uma pesquisa de dicionário é efetuada para recolher os identificadores candidatos. O quarto componente desambigua as entidades utilizando uma medida resultante da combinação linear do Information Content e da frequência do identificador nas notas clínicas em questão. O quinto componente baseia-se em entidades previamente normalizadas num mesmo documento, utilizando uma estratégia baseada na semelhança semântica. A entidade ambígua com maior semelhança semântica é a escolhida, assumindo desta forma que entidades pertencentes ao mesmo documento devem ser semelhantes entre si.O último componente normaliza entidades que não estejam representadas em nenhum dos dicionários referidos. Técnicas de Pattern Matching são aplicadas de forma a identificar a entidade candidata textualmente mais semelhante. Esta entidade é depois inserida no pipeline do sistema, sendo normalizada por um dos componentes anteriormente descritos. Para este componente, medidas como o NGram Similarity e Levenhstein foram utilizadas, tendo esta ultima medida sido estendida de forma a permitir medir a semelhança textual entre duas entidades sem ter em conta a ordem dos seus tokens (ExtendedLevenhstein). A interface desenvolvida permite aos utilizadores introduzirem documentos no formato de texto ou através da introdução de um identificador de um artigo no sistema PUBMED ou de um Tweet, sendo efetuada a recolha do texto associado. A interface permite ainda que os utilizadores corrijam ou adicionem novas anotações ao texto, sendo estas alterações registadas pelo sistema. São ainda apresentadas várias estatísticas em tempo real que permitem aos utilizadores navegar entre documentos. O sistema apresentado neste trabalho é resultante de duas primeiras iterações. A primeira foi utilizada para participar no SemEval 2014 e foi desenvolvida pela equipa ULisboa da qual fui autor principal. A segunda foi desenvolvida por mim no âmbito deste trabalho e foi utilizada para participar no SemEval 2015. Ambas as competições endereçavam a tarefa de Analysis of Clinical Text, sendo os sistemas submetidos avaliados oficialmente usando as medidas: precision, recall, F-score e accuracy. De forma a comparar o impacto do uso de machine learning no reconhecimento, desenvolvi adicionalmente um módulo de reconhecimento baseada em regras, permitindo assim comparar o desempenho de ambas as estratégias. Além das avaliações oficiais, o sistema foi igualmente avaliado localmente utilizando as mesmas medidas mas recorrendo a um conjunto de notas clinicas diferentes para avaliação. As avaliações permitiram entender o desempenho do sistema ao longo das várias iterações e do seu potencial atual. Foi possível observar que o sistema apresentado atingiu os objetivos esperados, conseguindo reconhecer e normalizar entidades biomédicas com um elevado desempenho. Olhando para cada módulo individualmente, observou-se que a utilização de algoritmos de machine learning permitiu atingir resultados bastante mais elevados no reconhecimento de entidades, do que aqueles obtidos utilizando uma abordagem baseada em regras. Observou-se ainda que a adição de Brown clusters como propriedades durante o treino melhorou o desempenho do sistema. A adição de léxicos produziu um efeito contrário, reduzindo o desempenho. Olhando apenas para o módulo de normalização, este conseguiu normalizar entidades com uma confiança de 91.3%. Este valor é bastante superior ao obtido pela primeira iteração do sistema que apenas atingiu uma confiança de 60.2%. O sistema como um todo foi avaliado oficialmente nas competições mencionadas. No SemEval 2014 o sistema submetido obteve o 14o lugar na tarefa de reconhecimento e o 25o na de normalização. Já no SemEval 2015, o sistema foi capaz de obter o 2o lugar com uma precision de 77.9%, um recall de 70.5% e um F-score de 74%. A avaliação desta última competição assumiu o reconhecimento e a normalização como uma tarefa única. Estes resultados mostram que o sistema evoluiu bastante, atingindo um excelente desemepenho. O sistema conseguiu ainda superar os resultados obtidos pelo sistema da equipa UTH CCB que na edição de 2014 foi a equipa que obteve a melhor classificação. Este trabalho apresenta um sistema que apesar de usar técnicas state of the art com algumas adaptações, conseguiu atingir um desempenho relevante face a outros sistemas a nível global, possuindo um enorme potencial para atingir melhores resultados. Como trabalho futuro, o módulo de reconhecimento poderá ser melhorado através da introdução de novas propriedades que melhorem a definição das entidades relevantes. Alguns componentes da pipeline de normalização podem ser amplamente melhorados, aplicando novas técnicas de desambiguação e pattern matching, ou mesmo recorrendo a algoritmos learningto rank semelhantes ao apresentado pelo sistema de DNorm é visto igualmente como uma mais valia.Clinical notes in textual form occur frequently in Electronic Health Records (EHRs).They are mainly used to describe treatment plans, symptoms, diagnostics, etc. Clinicalnotes are recorded in narrative language without any structured form and, since each medicalprofessional uses different types of terminologies according to context and to theirspecialization, the interpretation of these notes is very challenging for their complexity,heterogeneity, ambiguity and contextual sensitivity.Forcing medical professionals to introduce the information in a predefined structuresimplifies the interpretation. However, the imposition of such a rigid structure increasesnot only the time needed to record data, but it also introduces barriers at recording unusualcases. Thus, medical professionals are already encouraged to record the information in adigital form, but mostyl as narrative text. This will increase the amount of clinical notes toprocess, and doing it manually requires a huge human effort to accomplish it in a feasible time. This work presents a system for automatic recognition and normalization of biomedical concepts within clinical notes, by applying text mining techniques and using domain knowledge from the SNOMED CT ontology. The system is composed by two modules.The first one is responsible for the recognition and it is based on the Stanford NER Softwareto generate CRF models. The models were generated by using a rich set of features and employing a novel classification system, SBIEON. The second module is responsible for the normalization, where a pipeline framework was created. This modular framework leverages on a set of techniques such as (i) direct match dictionary lookup, (ii) pattern matching, (iii) information content and (iv) semantic similarity. The system was evaluated in the SemEval 2015 international competition, achieving the second best F-score (74%) and the second best precision (77.9%), among 38 submissions. After the competition, this system was improved, increasing the overall performance and reducing the running time by 60%

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Incorporating Ontological Information in Biomedical Entity Linking of Phrases in Clinical Text

    Get PDF
    Biomedical Entity Linking (BEL) is the task of mapping spans of text within biomedical documents to normalized, unique identifiers within an ontology. Translational application of BEL on clinical notes has enormous potential for augmenting discretely captured data in electronic health records, but the existing paradigm for evaluating BEL systems developed in academia is not well aligned with real-world use cases. In this work, we demonstrate a proof of concept for incorporating ontological similarity into the training and evaluation of BEL systems to begin to rectify this misalignment. This thesis has two primary components: 1) a comprehensive literature review and 2) a methodology section to propose novel BEL techniques to contribute to scientific progress in the field. In the literature review component, I survey the progression of BEL from its inception in the late 80s to present day state of the art systems, provide a comprehensive list of datasets available for training BEL systems, reference shared tasks focused on BEL, and outline the technical components that vii comprise BEL systems. In the methodology component, I describe my experiments incorporating ontological information into training a BERT encoder for entity linking

    A Biased Topic Modeling Approach for Case Control Study from Health Related Social Media Postings

    Get PDF
    abstract: Online social networks are the hubs of social activity in cyberspace, and using them to exchange knowledge, experiences, and opinions is common. In this work, an advanced topic modeling framework is designed to analyse complex longitudinal health information from social media with minimal human annotation, and Adverse Drug Events and Reaction (ADR) information is extracted and automatically processed by using a biased topic modeling method. This framework improves and extends existing topic modelling algorithms that incorporate background knowledge. Using this approach, background knowledge such as ADR terms and other biomedical knowledge can be incorporated during the text mining process, with scores which indicate the presence of ADR being generated. A case control study has been performed on a data set of twitter timelines of women that announced their pregnancy, the goals of the study is to compare the ADR risk of medication usage from each medication category during the pregnancy. In addition, to evaluate the prediction power of this approach, another important aspect of personalized medicine was addressed: the prediction of medication usage through the identification of risk groups. During the prediction process, the health information from Twitter timeline, such as diseases, symptoms, treatments, effects, and etc., is summarized by the topic modelling processes and the summarization results is used for prediction. Dimension reduction and topic similarity measurement are integrated into this framework for timeline classification and prediction. This work could be applied to provide guidelines for FDA drug risk categories. Currently, this process is done based on laboratory results and reported cases. Finally, a multi-dimensional text data warehouse (MTD) to manage the output from the topic modelling is proposed. Some attempts have been also made to incorporate topic structure (ontology) and the MTD hierarchy. Results demonstrate that proposed methods show promise and this system represents a low-cost approach for drug safety early warning.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    corecore