456,667 research outputs found

    Recommendations and illustrations for the evaluation of photonic random number generators

    Full text link
    The never-ending quest to improve the security of digital information combined with recent improvements in hardware technology has caused the field of random number generation to undergo a fundamental shift from relying solely on pseudo-random algorithms to employing optical entropy sources. Despite these significant advances on the hardware side, commonly used statistical measures and evaluation practices remain ill-suited to understand or quantify the optical entropy that underlies physical random number generation. We review the state of the art in the evaluation of optical random number generation and recommend a new paradigm: quantifying entropy generation and understanding the physical limits of the optical sources of randomness. In order to do this, we advocate for the separation of the physical entropy source from deterministic post-processing in the evaluation of random number generators and for the explicit consideration of the impact of the measurement and digitization process on the rate of entropy production. We present the Cohen-Procaccia estimate of the entropy rate h(ϵ,τ)h(\epsilon,\tau) as one way to do this. In order to provide an illustration of our recommendations, we apply the Cohen-Procaccia estimate as well as the entropy estimates from the new NIST draft standards for physical random number generators to evaluate and compare three common optical entropy sources: single photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission

    Security of quantum key distribution with imperfect devices

    Full text link
    We prove the security of the Bennett-Brassard (BB84) quantum key distribution protocol in the case where the source and detector are under the limited control of an adversary. Our proof applies when both the source and the detector have small basis-dependent flaws, as is typical in practical implementations of the protocol. We derive a general lower bound on the asymptotic key generation rate for weakly basis-dependent eavesdropping attacks, and also estimate the rate in some special cases: sources that emit weak coherent states with random phases, detectors with basis-dependent efficiency, and misaligned sources and detectors.Comment: 22 pages. (v3): Minor changes. (v2): Extensively revised and expanded. New results include a security proof for generic small flaws in the source and the detecto

    Multiplexed Quantum Random Number Generation

    Get PDF
    Fast secure random number generation is essential for high-speed encrypted communication, and is the backbone of information security. Generation of truly random numbers depends on the intrinsic randomness of the process used and is usually limited by electronic bandwidth and signal processing data rates. Here we use a multiplexing scheme to create a fast quantum random number generator structurally tailored to encryption for distributed computing, and high bit-rate data transfer. We use vacuum fluctuations measured by seven homodyne detectors as quantum randomness sources, multiplexed using a single integrated optical device. We obtain a random number generation rate of 3.08 Gbit/s, from only 27.5 MHz of sampled detector bandwidth. Furthermore, we take advantage of the multiplexed nature of our system to demonstrate an unseeded strong extractor with a generation rate of 26 Mbit/s.Comment: 10 pages, 3 figures and 1 tabl

    Fast and secure key distribution using mesoscopic coherent states of light

    Full text link
    This work shows how two parties A and B can securely share sequences of random bits at optical speeds. A and B possess true-random physical sources and exchange random bits by using a random sequence received to cipher the following one to be sent. A starting shared secret key is used and the method can be described as an unlimited one-time-pad extender. It is demonstrated that the minimum probability of error in signal determination by the eavesdropper can be set arbitrarily close to the pure guessing level. Being based on the MM-ry encryption protocol this method also allows for optical amplification without security degradation, offering practical advantages over the BB84 protocol for key distribution.Comment: 11 pages and 4 figures. This version updates the one published in PRA 68, 052307 (2003). Minor changes were made in the text and one section on Mutual Information was adde
    corecore