444 research outputs found

    On the Security of ID Based Signcryption Schemes

    Get PDF
    A signcryption scheme is secure only if it satisfies both the confidentiality and the unforgeability properties. All the ID based signcryption schemes presented in the standard model till now do not have either the confidentiality or the unforgeability or both of these properties. Cryptanalysis of some of the schemes have been proposed already. In this work, we present the security attacks on `Secure ID based signcryption in the standard model\u27 proposed by Li-Takagi and `Further improvement of an identity-based signcryption scheme in the standard model\u27 by Li et al. and the flaws in the proof of security of `Efficient ID based signcryption in the standard model\u27 proposed by Li et al., which are the recently proposed ID based signcryption schemes in the standard model. We also present the cryptanalysis of `Construction of identity based signcryption schemes\u27 proposed by Pandey-Barua and the cryptanalysis of `Identity-Based Signcryption from Identity-Based Cryptography\u27 proposed by Lee-Seo-Lee. These schemes present the methods of constructing an ID based signcryption scheme in the random oracle model from an ID based signature scheme and an ID based encryption scheme. Since none of the existing schemes in the standard model are found to be provably secure, we analyse the security of signcryption schemes got by directly combining an ID based signature scheme and an ID based encryption scheme in the standard model

    Signcryption schemes with threshold unsigncryption, and applications

    Get PDF
    The final publication is available at link.springer.comThe goal of a signcryption scheme is to achieve the same functionalities as encryption and signature together, but in a more efficient way than encrypting and signing separately. To increase security and reliability in some applications, the unsigncryption phase can be distributed among a group of users, through a (t, n)-threshold process. In this work we consider this task of threshold unsigncryption, which has received very few attention from the cryptographic literature up to now (maybe surprisingly, due to its potential applications). First we describe in detail the security requirements that a scheme for such a task should satisfy: existential unforgeability and indistinguishability, under insider chosen message/ciphertext attacks, in a multi-user setting. Then we show that generic constructions of signcryption schemes (by combining encryption and signature schemes) do not offer this level of security in the scenario of threshold unsigncryption. For this reason, we propose two new protocols for threshold unsigncryption, which we prove to be secure, one in the random oracle model and one in the standard model. The two proposed schemes enjoy an additional property that can be very useful. Namely, the unsigncryption protocol can be divided in two phases: a first one where the authenticity of the ciphertext is verified, maybe by a single party; and a second one where the ciphertext is decrypted by a subset of t receivers, without using the identity of the sender. As a consequence, the schemes can be used in applications requiring some level of anonymity, such as electronic auctions.Peer ReviewedPostprint (author's final draft

    SIGNCRYPTION ANALYZE

    Get PDF
    The aim of this paper is to provide an overview for the research that has been done so far in signcryption area. The paper also presents the extensions for the signcryption scheme and discusses the security in signcryption. The main contribution to this paper represents the implementation of the signcryption algorithm with the examples provided.ElGamal, elliptic curves, encryption, identity-based, proxy-signcryption, public key, ring-signcryption, RSA, signcryption

    An Elliptic Curve-based Signcryption Scheme with Forward Secrecy

    Full text link
    An elliptic curve-based signcryption scheme is introduced in this paper that effectively combines the functionalities of digital signature and encryption, and decreases the computational costs and communication overheads in comparison with the traditional signature-then-encryption schemes. It simultaneously provides the attributes of message confidentiality, authentication, integrity, unforgeability, non-repudiation, public verifiability, and forward secrecy of message confidentiality. Since it is based on elliptic curves and can use any fast and secure symmetric algorithm for encrypting messages, it has great advantages to be used for security establishments in store-and-forward applications and when dealing with resource-constrained devices.Comment: 13 Pages, 5 Figures, 2 Table

    TOWARD CERTIFICATELESS SIGNCRYPTION SCHEME WITHOUT RANDOM ORACLES

    Get PDF
    Signcryption is a useful paradigm which simultaneously offers both the functions of encryption and signature in a single logic step. It would be interesting to make signcryption certificateless to ease the heavy burden of certificate management in traditional public key cryptography (PKC) and solve the key escrow problem in Identity-based public key cryptography (ID-PKC). Most certificateless signcryption (CL-SC) schemes are constructed in the random oracle model instead of the standard model. By exploiting Bellare and Shoup\u27s one-time signature, Hwang et al.\u27s certificateless encryption and Li et al.\u27s identity-based signcryption, this paper proposes a new CL-SC scheme secure in the standard model. It is proven that our CL-SC scheme satisfies semantic security and unforgeability against the outside adversary and malicious-but-passive key generation center (KGC) assuming the hardness of bilinear decision Diffie-Hellman (BDDH) and computational Diffie-Hellman (CDH) problems. Our security proofs do not depend on random oracles

    ID-based Ring Signature and Proxy Ring Signature Schemes from Bilinear Pairings

    Get PDF
    In 2001, Rivest et al. firstly introduced the concept of ring signatures. A ring signature is a simplified group signature without any manager. It protects the anonymity of a signer. The first scheme proposed by Rivest et al. was based on RSA cryptosystem and certificate based public key setting. The first ring signature scheme based on DLP was proposed by Abe, Ohkubo, and Suzuki. Their scheme is also based on the general certificate-based public key setting too. In 2002, Zhang and Kim proposed a new ID-based ring signature scheme using pairings. Later Lin and Wu proposed a more efficient ID-based ring signature scheme. Both these schemes have some inconsistency in computational aspect. In this paper we propose a new ID-based ring signature scheme and a proxy ring signature scheme. Both the schemes are more efficient than existing one. These schemes also take care of the inconsistencies in above two schemes.Comment: Published with ePrint Archiv

    nMIBAS: A Novel Multi-Receiver ID-Based Anonymous Signcryption with Decryption Fairness

    Get PDF
    Based on the ring signature technology, the multi-receiver ID-based anonymous signcryption (MIBAS) is proposed, and its goal is to protect the privacy of the sender or so-called signer. In an MIBAS scheme, every receiver can verify whether the sender is a member of a trusted group and thus ensure the reliability of the message source, but he could not get the real sender. However, MIBAS paid no attention to privacy of the receivers and has not taken the privacy of the receivers into account during its design. Our analyses show that there widely exist the receiver privacy exposure and decryption unfairness problems in the existing multi-receiver ID-based signcryption schemes. Motivated by these concerns, a new multi-receiver ID-based anonymous signcryption (nMIBAS) is proposed to protect the identity of the receivers. The nMIBAS scheme can not only solve the problem that the existing schemes cannot protect the privacy of receivers, but also meet the fairness of decryption to prevent the possible cheating behavior of the sender effectively. Analysis shows that this scheme is a secure and effective signcryption scheme
    • …
    corecore