7,559 research outputs found

    Extracting random numbers from quantum tunnelling through a single diode

    Get PDF
    Random number generation is crucial in many aspects of everyday life, as online security and privacy depend ultimately on the quality of random numbers. Many current implementations are based on pseudo-random number generators, but information security requires true random numbers for sensitive applications like key generation in banking, defence or even social media. True random number generators are systems whose outputs cannot be determined, even if their internal structure and response history are known. Sources of quantum noise are thus ideal for this application due to their intrinsic uncertainty. In this work, we propose using resonant tunnelling diodes as practical true random number generators based on a quantum mechanical effect. The output of the proposed devices can be directly used as a random stream of bits or can be further distilled using randomness extraction algorithms, depending on the application

    On the design of a family of CI pseudo-random number generators

    Full text link
    Chaos and its applications in the field of secure communications have attracted a lot of attention. Chaos-based pseudo-random number generators are critical to guarantee security over open networks as the Internet. We have previously demonstrated that it is possible to define such generators with good statistical properties by using a tool called "chaotic iterations", which depends on an iteration function. An approach to find update functions such that the associated generator presents a random-like and chaotic behavior is proposed in this research work. To do so, we use the vectorial Boolean negation as a prototype and explain how to modify this iteration function without deflating the good properties of the associated generator. Simulation results and basic security analysis are then presented to evaluate the randomness of this new family of generators.Comment: 4 pages, In WICOM'11, 7th Int. IEEE Conf. on Wireless Communications, Networking and Mobile Computing, Wuhan, China, pages 1--4, September 201

    REVIEW ON USING BIOMETRIC SIGNALS IN RANDOM NUMBER GENERATORS.

    Get PDF
    Random numbers play an important role in digital security and are used in encryption, public key cryptography to ensure the safe and unchanged transmission. Random number generators are required to generate these random numbers, but true randomness is difficult to achieve and requires a true random source to generate the number which cannot be predicted from the knowledge of previous inputs. This paper discusses about incorporating biometrics and cryptography for stronger security and to generate random numbers with true randomness. Biometric systems are used to uniquely identify individuals in the security but uses a sophisticated procedure. Biometric signals are non-deterministic processes that are unpredictable and good source of randomness. This paper reviews the feasibility of using biometric signals in Random Number Generator (RNG) discuss whether biometric signals such as heartbeats, vascular patterns, iris scans and human Galvanic Skin Response (GSR) can be used in nearby future to generate reliable Random numbers. This paper will also review the work done towards generating random numbers using these biometric signals and the result of them, verified with statistical test suites such as NIST

    Evaluation Criteria On Ambience-Based True Random Number Generators

    Get PDF
    There is a need nowadays to ensure information security which is independent of the security mechanism of physical medium. Cryptography still remains an important science in daily life, be it for sovereignty use or the privacy of individuals. Ultimately, the security of the interoperating open cryptosystem must reside only in the key being used. It must be true random key. It is a challenging task to generate a true random key live on demand suitable for cryptographic applications. This paper shall formally propose an evaluation criteria on a true random number generator (TRNG). An evaluation has been done on various TRNG for cryptographic keys. This paper will also classify recent TRNGs into several groups. A new true random generator has been developed based on the air ambience for cryptographic application and evaluated against other TRNGs under the proposed evaluation criteria

    Recommendations and illustrations for the evaluation of photonic random number generators

    Full text link
    The never-ending quest to improve the security of digital information combined with recent improvements in hardware technology has caused the field of random number generation to undergo a fundamental shift from relying solely on pseudo-random algorithms to employing optical entropy sources. Despite these significant advances on the hardware side, commonly used statistical measures and evaluation practices remain ill-suited to understand or quantify the optical entropy that underlies physical random number generation. We review the state of the art in the evaluation of optical random number generation and recommend a new paradigm: quantifying entropy generation and understanding the physical limits of the optical sources of randomness. In order to do this, we advocate for the separation of the physical entropy source from deterministic post-processing in the evaluation of random number generators and for the explicit consideration of the impact of the measurement and digitization process on the rate of entropy production. We present the Cohen-Procaccia estimate of the entropy rate h(ϵ,τ)h(\epsilon,\tau) as one way to do this. In order to provide an illustration of our recommendations, we apply the Cohen-Procaccia estimate as well as the entropy estimates from the new NIST draft standards for physical random number generators to evaluate and compare three common optical entropy sources: single photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission

    Steganography: a Class of Algorithms having Secure Properties

    Full text link
    Chaos-based approaches are frequently proposed in information hiding, but without obvious justification. Indeed, the reason why chaos is useful to tackle with discretion, robustness, or security, is rarely elucidated. This research work presents a new class of non-blind information hidingalgorithms based on some finite domains iterations that are Devaney's topologically chaotic. The approach is entirely formalized and reasons to take place into the mathematical theory of chaos are explained. Finally, stego-security and chaos security are consequently proven for a large class of algorithms.Comment: 4 pages, published in Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2011, Dalian, China, October 14-16, 201

    Improving the Statistical Qualities of Pseudo Random Number Generators

    Get PDF
    Pseudo random and true random sequence generators are important components in many scientific and technical fields, playing a fundamental role in the application of the Monte Carlo methods and stochastic simulation. Unfortunately, the quality of the sequences produced by these generators are not always ideal in terms of randomness for many applications. We present a new nonlinear filter design that improves the output sequences of common pseudo random generators in terms of statistical randomness. Taking inspiration from techniques employed in symmetric ciphers, it is based on four seed-dependent substitution boxes, an evolving internal state register, and the combination of different types of operations with the aim of diffusing nonrandom patterns in the input sequence. For statistical analysis we employ a custom initial battery of tests and well-regarded comprehensive packages such as TestU01 and PractRand. Analysis results show that our proposal achieves excellent randomness characteristics and can even transform nonrandom sources (such as a simple counter generator) into perfectly usable pseudo random sequences. Furthermore, performance is excellent while storage consumption is moderate, enabling its implementation in embedded or low power computational platforms.This research was funded by the Spanish Ministry of Science, Innovation and Universities (MCIU), the State Research Agency (AEI), and the European Regional Development Fund (ERDF) under project RTI2018-097263-B-I00 (ACTIS)

    Random Number Generation: Types and Techniques

    Get PDF
    What does it mean to have random numbers? Without understanding where a group of numbers came from, it is impossible to know if they were randomly generated. However, common sense claims that if the process to generate these numbers is truly understood, then the numbers could not be random. Methods that are able to let their internal workings be known without sacrificing random results are what this paper sets out to describe. Beginning with a study of what it really means for something to be random, this paper dives into the topic of random number generators and summarizes the key areas. It covers the two main groups of generators, true-random and pseudo-random, and gives practical examples of both. To make the information more applicable, real life examples of currently used and currently available generators are provided as well. Knowing the how and why of a number sequence without knowing the values that will come is possible, and this thesis explains how it is accomplished

    Analysis and Design Security Primitives Based on Chaotic Systems for eCommerce

    Get PDF
    Security is considered the most important requirement for the success of electronic commerce, which is built based on the security of hash functions, encryption algorithms and pseudorandom number generators. Chaotic systems and security algorithms have similar properties including sensitivity to any change or changes in the initial parameters, unpredictability, deterministic nature and random-like behaviour. Several security algorithms based on chaotic systems have been proposed; unfortunately some of them were found to be insecure and/or slow. In view of this, designing new secure and fast security algorithms based on chaotic systems which guarantee integrity, authentication and confidentiality is essential for electronic commerce development. In this thesis, we comprehensively explore the analysis and design of security primitives based on chaotic systems for electronic commerce: hash functions, encryption algorithms and pseudorandom number generators. Novel hash functions, encryption algorithms and pseudorandom number generators based on chaotic systems for electronic commerce are proposed. The securities of the proposed algorithms are analyzed based on some well-know statistical tests in this filed. In addition, a new one-dimensional triangle-chaotic map (TCM) with perfect chaotic behaviour is presented. We have compared the proposed chaos-based hash functions, block cipher and pseudorandom number generator with well-know algorithms. The comparison results show that the proposed algorithms are better than some other existing algorithms. Several analyses and computer simulations are performed on the proposed algorithms to verify their characteristics, confirming that these proposed algorithms satisfy the characteristics and conditions of security algorithms. The proposed algorithms in this thesis are high-potential for adoption in e-commerce applications and protocols
    • …
    corecore