30,965 research outputs found

    High-Rate Space-Time Coded Large MIMO Systems: Low-Complexity Detection and Channel Estimation

    Full text link
    In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-MIMO systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16x16 and 32x32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.Comment: v3: Performance/complexity comparison of the proposed scheme with other large-MIMO architectures/detectors has been added (Sec. IV-D). The paper has been accepted for publication in IEEE Journal of Selected Topics in Signal Processing (JSTSP): Spl. Iss. on Managing Complexity in Multiuser MIMO Systems. v2: Section V on Channel Estimation is update

    Throughput-based Design for Polar Coded-Modulation

    Full text link
    Typically, forward error correction (FEC) codes are designed based on the minimization of the error rate for a given code rate. However, for applications that incorporate hybrid automatic repeat request (HARQ) protocol and adaptive modulation and coding, the throughput is a more important performance metric than the error rate. Polar codes, a new class of FEC codes with simple rate matching, can be optimized efficiently for maximization of the throughput. In this paper, we aim to design HARQ schemes using multilevel polar coded-modulation (MLPCM). Thus, we first develop a method to determine a set-partitioning based bit-to-symbol mapping for high order QAM constellations. We simplify the LLR estimation of set-partitioned QAM constellations for a multistage decoder, and we introduce a set of algorithms to design throughput-maximizing MLPCM for the successive cancellation decoding (SCD). These codes are specifically useful for non-combining (NC) and Chase-combining (CC) HARQ protocols. Furthermore, since optimized codes for SCD are not optimal for SC list decoders (SCLD), we propose a rate matching algorithm to find the best rate for SCLD while using the polar codes optimized for SCD. The resulting codes provide throughput close to the capacity with low decoding complexity when used with NC or CC HARQ

    Millimeter Wave Communications with Reconfigurable Antennas

    Full text link
    The highly sparse nature of propagation channels and the restricted use of radio frequency (RF) chains at transceivers limit the performance of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems. Introducing reconfigurable antennas to mmWave can offer an additional degree of freedom on designing mmWave MIMO systems. This paper provides a theoretical framework for studying the mmWave MIMO with reconfigurable antennas. We present an architecture of reconfigurable mmWave MIMO with beamspace hybrid analog-digital beamformers and reconfigurable antennas at both the transmitter and the receiver. We show that employing reconfigurable antennas can provide throughput gain for the mmWave MIMO. We derive the expression for the average throughput gain of using reconfigurable antennas, and further simplify the expression by considering the case of large number of reconfiguration states. In addition, we propose a low-complexity algorithm for the reconfiguration state and beam selection, which achieves nearly the same throughput performance as the optimal selection of reconfiguration state and beams by exhaustive search.Comment: presented at IEEE ICC 201
    corecore