542 research outputs found

    Capacity and Power Scaling Laws for Finite Antenna MIMO Amplify-and-Forward Relay Networks

    Full text link
    In this paper, we present a novel framework that can be used to study the capacity and power scaling properties of linear multiple-input multiple-output (MIMO) d×dd\times d antenna amplify-and-forward (AF) relay networks. In particular, we model these networks as random dynamical systems (RDS) and calculate their dd Lyapunov exponents. Our analysis can be applied to systems with any per-hop channel fading distribution, although in this contribution we focus on Rayleigh fading. Our main results are twofold: 1) the total transmit power at the nnth node will follow a deterministic trajectory through the network governed by the network's maximum Lyapunov exponent, 2) the capacity of the iith eigenchannel at the nnth node will follow a deterministic trajectory through the network governed by the network's iith Lyapunov exponent. Before concluding, we concentrate on some applications of our results. In particular, we show how the Lyapunov exponents are intimately related to the rate at which the eigenchannel capacities diverge from each other, and how this relates to the amplification strategy and number of antennas at each relay. We also use them to determine the extra cost in power associated with each extra multiplexed data stream.Comment: 16 pages, 9 figures. Accepted for publication in IEEE Transactions on Information Theor

    Random Access for Massive MIMO Systems with Intra-Cell Pilot Contamination

    Full text link
    Massive MIMO systems, where the base stations are equipped with hundreds of antenna elements, are an attractive way to attain unprecedented spectral efficiency in future wireless networks. In the "classical" massive MIMO setting, the terminals are assumed fully loaded and a main impairment to the performance comes from the inter-cell pilot contamination, i.e., interference from terminals in neighboring cells using the same pilots as in the home cell. However, when the terminals are active intermittently, it is viable to avoid inter-cell contamination by pre-allocation of pilots, while same-cell terminals use random access to select the allocated pilot sequences. This leads to the problem of intra-cell pilot contamination. We propose a framework for random access in massive MIMO networks and derive new uplink sum rate expressions that take intra-cell pilot collisions, intermittent terminal activity, and interference into account. We use these expressions to optimize the terminal activation probability and pilot length

    MIMO Networks: the Effects of Interference

    Full text link
    Multiple-input/multiple-output (MIMO) systems promise enormous capacity increase and are being considered as one of the key technologies for future wireless networks. However, the decrease in capacity due to the presence of interferers in MIMO networks is not well understood. In this paper, we develop an analytical framework to characterize the capacity of MIMO communication systems in the presence of multiple MIMO co-channel interferers and noise. We consider the situation in which transmitters have no information about the channel and all links undergo Rayleigh fading. We first generalize the known determinant representation of hypergeometric functions with matrix arguments to the case when the argument matrices have eigenvalues of arbitrary multiplicity. This enables the derivation of the distribution of the eigenvalues of Gaussian quadratic forms and Wishart matrices with arbitrary correlation, with application to both single user and multiuser MIMO systems. In particular, we derive the ergodic mutual information for MIMO systems in the presence of multiple MIMO interferers. Our analysis is valid for any number of interferers, each with arbitrary number of antennas having possibly unequal power levels. This framework, therefore, accommodates the study of distributed MIMO systems and accounts for different positions of the MIMO interferers.Comment: Submitted to IEEE Trans. on Info. Theor

    Massive MIMO Systems with Non-Ideal Hardware: Energy Efficiency, Estimation, and Capacity Limits

    Full text link
    The use of large-scale antenna arrays can bring substantial improvements in energy and/or spectral efficiency to wireless systems due to the greatly improved spatial resolution and array gain. Recent works in the field of massive multiple-input multiple-output (MIMO) show that the user channels decorrelate when the number of antennas at the base stations (BSs) increases, thus strong signal gains are achievable with little inter-user interference. Since these results rely on asymptotics, it is important to investigate whether the conventional system models are reasonable in this asymptotic regime. This paper considers a new system model that incorporates general transceiver hardware impairments at both the BSs (equipped with large antenna arrays) and the single-antenna user equipments (UEs). As opposed to the conventional case of ideal hardware, we show that hardware impairments create finite ceilings on the channel estimation accuracy and on the downlink/uplink capacity of each UE. Surprisingly, the capacity is mainly limited by the hardware at the UE, while the impact of impairments in the large-scale arrays vanishes asymptotically and inter-user interference (in particular, pilot contamination) becomes negligible. Furthermore, we prove that the huge degrees of freedom offered by massive MIMO can be used to reduce the transmit power and/or to tolerate larger hardware impairments, which allows for the use of inexpensive and energy-efficient antenna elements.Comment: To appear in IEEE Transactions on Information Theory, 28 pages, 15 figures. The results can be reproduced using the following Matlab code: https://github.com/emilbjornson/massive-MIMO-hardware-impairment
    corecore