19 research outputs found

    On the Saddle-point Solution and the Large-Coalition Asymptotics of Fingerprinting Games

    Full text link
    We study a fingerprinting game in which the number of colluders and the collusion channel are unknown. The encoder embeds fingerprints into a host sequence and provides the decoder with the capability to trace back pirated copies to the colluders. Fingerprinting capacity has recently been derived as the limit value of a sequence of maximin games with mutual information as their payoff functions. However, these games generally do not admit saddle-point solutions and are very hard to solve numerically. Here under the so-called Boneh-Shaw marking assumption, we reformulate the capacity as the value of a single two-person zero-sum game, and show that it is achieved by a saddle-point solution. If the maximal coalition size is k and the fingerprinting alphabet is binary, we show that capacity decays quadratically with k. Furthermore, we prove rigorously that the asymptotic capacity is 1/(k^2 2ln2) and we confirm our earlier conjecture that Tardos' choice of the arcsine distribution asymptotically maximizes the mutual information payoff function while the interleaving attack minimizes it. Along with the asymptotic behavior, numerical solutions to the game for small k are also presented.Comment: submitted to IEEE Trans. on Information Forensics and Securit

    Capacities and Capacity-Achieving Decoders for Various Fingerprinting Games

    Full text link
    Combining an information-theoretic approach to fingerprinting with a more constructive, statistical approach, we derive new results on the fingerprinting capacities for various informed settings, as well as new log-likelihood decoders with provable code lengths that asymptotically match these capacities. The simple decoder built against the interleaving attack is further shown to achieve the simple capacity for unknown attacks, and is argued to be an improved version of the recently proposed decoder of Oosterwijk et al. With this new universal decoder, cut-offs on the bias distribution function can finally be dismissed. Besides the application of these results to fingerprinting, a direct consequence of our results to group testing is that (i) a simple decoder asymptotically requires a factor 1.44 more tests to find defectives than a joint decoder, and (ii) the simple decoder presented in this paper provably achieves this bound.Comment: 13 pages, 2 figure

    Asymptotics of Fingerprinting and Group Testing: Tight Bounds from Channel Capacities

    Get PDF
    In this work we consider the large-coalition asymptotics of various fingerprinting and group testing games, and derive explicit expressions for the capacities for each of these models. We do this both for simple decoders (fast but suboptimal) and for joint decoders (slow but optimal). For fingerprinting, we show that if the pirate strategy is known, the capacity often decreases linearly with the number of colluders, instead of quadratically as in the uninformed fingerprinting game. For many attacks the joint capacity is further shown to be strictly higher than the simple capacity. For group testing, we improve upon known results about the joint capacities, and derive new explicit asymptotics for the simple capacities. These show that existing simple group testing algorithms are suboptimal, and that simple decoders cannot asymptotically be as efficient as joint decoders. For the traditional group testing model, we show that the gap between the simple and joint capacities is a factor 1.44 for large numbers of defectives.Comment: 14 pages, 6 figure

    Optimal sequential fingerprinting: Wald vs. Tardos

    Full text link
    We study sequential collusion-resistant fingerprinting, where the fingerprinting code is generated in advance but accusations may be made between rounds, and show that in this setting both the dynamic Tardos scheme and schemes building upon Wald's sequential probability ratio test (SPRT) are asymptotically optimal. We further compare these two approaches to sequential fingerprinting, highlighting differences between the two schemes. Based on these differences, we argue that Wald's scheme should in general be preferred over the dynamic Tardos scheme, even though both schemes have their merits. As a side result, we derive an optimal sequential group testing method for the classical model, which can easily be generalized to different group testing models.Comment: 12 pages, 10 figure

    Asymptotics of Fingerprinting and Group Testing: Capacity-Achieving Log-Likelihood Decoders

    Get PDF
    We study the large-coalition asymptotics of fingerprinting and group testing, and derive explicit decoders that provably achieve capacity for many of the considered models. We do this both for simple decoders (fast but suboptimal) and for joint decoders (slow but optimal), and both for informed and uninformed settings. For fingerprinting, we show that if the pirate strategy is known, the Neyman-Pearson-based log-likelihood decoders provably achieve capacity, regardless of the strategy. The decoder built against the interleaving attack is further shown to be a universal decoder, able to deal with arbitrary attacks and achieving the uninformed capacity. This universal decoder is shown to be closely related to the Lagrange-optimized decoder of Oosterwijk et al. and the empirical mutual information decoder of Moulin. Joint decoders are also proposed, and we conjecture that these also achieve the corresponding joint capacities. For group testing, the simple decoder for the classical model is shown to be more efficient than the one of Chan et al. and it provably achieves the simple group testing capacity. For generalizations of this model such as noisy group testing, the resulting simple decoders also achieve the corresponding simple capacities.Comment: 14 pages, 2 figure

    Dynamic Traitor Tracing Schemes, Revisited

    Get PDF
    We revisit recent results from the area of collusion-resistant traitor tracing, and show how they can be combined and improved to obtain more efficient dynamic traitor tracing schemes. In particular, we show how the dynamic Tardos scheme of Laarhoven et al. can be combined with the optimized score functions of Oosterwijk et al. to trace coalitions much faster. If the attack strategy is known, in many cases the order of the code length goes down from quadratic to linear in the number of colluders, while if the attack is not known, we show how the interleaving defense may be used to catch all colluders about twice as fast as in the dynamic Tardos scheme. Some of these results also apply to the static traitor tracing setting where the attack strategy is known in advance, and to group testing.Comment: 7 pages, 1 figure (6 subfigures), 1 tabl

    Efficient Probabilistic Group Testing Based on Traitor Tracing

    Get PDF
    Inspired by recent results from collusion-resistant traitor tracing, we provide a framework for constructing efficient probabilistic group testing schemes. In the traditional group testing model, our scheme asymptotically requires T ~ 2 K ln N tests to find (with high probability) the correct set of K defectives out of N items. The framework is also applied to several noisy group testing and threshold group testing models, often leading to improvements over previously known results, but we emphasize that this framework can be applied to other variants of the classical model as well, both in adaptive and in non-adaptive settings.Comment: 8 pages, 3 figures, 1 tabl

    A capacity-achieving simple decoder for bias-based traitor tracing schemes

    Get PDF
    We investigate alternative suspicion functions for bias-based traitor tracing schemes, and present a practical construction of a simple decoder that attains capacity in the limit of large coalition size c. We derive optimal suspicion functions in both the Restricted- Digit Model and the Combined-Digit Model. These functions depend on information that is usually not available to the tracer โ€“ the attack strategy or the tallies of the symbols received by the colluders. We discuss how such results can be used in realistic contexts. We study several combinations of coalition attack strategy versus suspicion function optimized against some attack (another attack or the same). In many of these combinations the usual codelength scaling โ„“โˆc2\ell \propto c^2 changes to a lower power of cc, e.g., c3/2c^{3/2}. We find that the interleaving strategy is an especially powerful attack. The suspicion function tailored against interleaving is the key ingredient of the capacity-achieving construction
    corecore