23 research outputs found

    Label-controlled optical switching nodes

    Get PDF
    Optical networks are evolving from initially static optical circuits and subsequently optical circuit switching towards optical packet switching in order to take advan- tage of the high transport capacity made available by WDM systems in a more °exible and e±cient way. Optically labeling of packets and routing the packets's payload optically under control of its label allows the network nodes to route and forward IP data without having to process the payload, thus keeping it in the optical domain; this is a promising solution to avoid electronic bottlenecks in routers. All-optical label switching can therefore be used to route and forward packets independent of their length and payload bitrate. Several optical signal labeling techniques have been proposed in previous re- search reported in literature; orthogonal labeling and time-serial labeling have been studied in this thesis. This thesis studies two orthogonal modulation label- ing techniques: one based on FSK labels with an IM payload, and another one on SCM labeling for a DPSK modulated payload. A time-serial labeling method based on IM labels with IM or DPSK payload is also presented and studied. The ¯rst two techniques assume electronic processing of the labels in the node, and hence assume that labels can be transmitted at a much lower bitrate than the payload data rate. The third technique assumes all-optical signal processing in the nodes, capable of handling a label at the same bitrate or slightly lower than the payload data. Labels at low bitrate in comparison with the payload bitrate are desirable in systems where the label processing will be conducted in the electrical domain, while labels at the same bitrate as the payload can be used in systems where the processing is conducted in the optical domain, exploiting all-optical processing techniques. These three techniques have been chosen because they are compatible with the existing networks, since the modulation format, bitrates, transmission properties, and other features of the signals are similar to the ones used for commercially available applications. Thus, they can be considered important candidates for migration scenarios from optical circuit switching towards optical burst switching networking. Orthogonal labeling based on FSK/IM is a promising scheme for implementing the labeling of optical signals, and it is the technology of choice in the STOLAS project. This technique o®ers advantageous features such as a relaxed timing de- lineation between payload and label, and ease of label erasure and re-writing of new labels. By using wavelength-agile tunable laser sources with FSK modula- tion capability, wavelength converters, and passive wavelength routing elements, a scalable modular label-controlled router featuring high reliability can be built. In this thesis, several aspects of the physical parameters of an FSK/IM labeling scheme within a routing node have been studied and presented. Optical ¯ltering requires special care, since the combined FSK/IM scheme has a broader spectrum than that of pure intensity modulated signals. The requirements on the limited extinction ratio for the IM signal can be relaxed at low bitrates of the label signal or, alternatively, by introducing data encoding. Optical labeling by using FSK/IM represents a simple and attractive way of implementing hybrid optical circuit and burst switching in optical networks. Architecturally, similar advantages can be mentioned for the second orthogo- nal labeling technique studied in this thesis, based on SCM labels and a DPSK payload. In-band subcarriers carrying low bitrate labels located at a frequency equal to half the bitrate of the payload signal can be inserted introducing only low power penalties. Wavelength conversion can be implemented by using passive highly nonlinear ¯bers and exploiting the four-wave mixing e®ect. This thesis also studies the design of two functional blocks of an all-optical core node proposed in the LASAGNE project, namely the all-optical label and payload separator and the wavelength converter unit for a time-serial labeling scheme. The label and payload processor can be realized exploiting nonlinear e®ects in SOAs. An implementation using polarization division multiplexing to transport the external control light for an IM/IM time-serial scheme was demon- strated. Label and payload processors with self-contained control signals were also demonstrated, either using a DPSK signal to simultaneously transport the payload data and the control signal or inserting a CW dummy in between the label and the payload, which were based on IM-RZ format. A study on single- and multi- wavelength conversion based on FWM in a HNLF was presented. This approach allows transparent wavelength conversion (independent of the data format used) at high bitrates (the nonlinear e®ects in a ¯ber are obtained at ultrafast speeds). The labeling techniques explored have indicated a viable way of migration towards optical burst packet switched networks while signi¯cantly improving the throughput of the routing nodes

    Semiconductor Optical Amplifier for Next Generation of High Data Rate Optical Packet-Switched Networks

    Get PDF
    This chapter provides an overview of considerations for the development of semiconductor optical amplifiers (SOA) for the next generations of packet-switched optical networks. SOA devices are suitable candidates in order to realize high-performance optical gates due to their high extinction ratio and fast switching time. However such devices also introduce linear and nonlinear noise. The impact of SOA devices on several modulation formats via theoretical model, numerical simulation, and experimental validation is studied. Impairments introduced by SOAs are considered in order to derive some general network design rules

    Has silicon reached its limit?

    Get PDF
    In light of the rapidly increasing demand for ultra-high speed data transmission, data centres are under pressure to provide ever increasing data transmission through their networks and at the same time improve the quality of data handling in terms of reduced latency, increased scalability and improved channel speed for users. However as data rates increase, present electronic switching technology using current data centre architecture is becoming increasingly difficult to scale despite improvements in data management. In this paper the tremendous bandwidth potential of optical fibre based networks will be explored alongside the issues of electronic scalability and switching speed. A resulting need for alternative optical solutions for all-optical signal processing systems will be discussed. With this in mind, progress in the form of a novel and highly scalable optical interconnect will be reviewed

    Has silicon reached its limit?

    Get PDF
    In light of the rapidly increasing demand for ultra-high speed data transmission, data centres are under pressure to provide ever increasing data transmission through their networks and at the same time improve the quality of data handling in terms of reduced latency, increased scalability and improved channel speed for users. However as data rates increase, present electronic switching technology using current data centre architecture is becoming increasingly difficult to scale despite improvements in data management. In this paper the tremendous bandwidth potential of optical fibre based networks will be explored alongside the issues of electronic scalability and switching speed. A resulting need for alternative optical solutions for all-optical signal processing systems will be discussed. With this in mind, progress in the form of a novel and highly scalable optical interconnect will be reviewed

    An Optical Grooming Switch for High-Speed Traffic Aggregation in Time, Space and Wavelength

    Get PDF
    In this book a novel optical switch is designed, developed, and tested. The switch integrates optical switching, transparent traffic aggregation/grooming, and optical regener-ation. Innovative switch subsystems are developed that enable these functionalities, including all-optical OTDM-to-WDM converters. High capacity ring interconnection between metro-core rings, carrying 130 Gbit/s OTDM traffic, and metro-access rings carring 43 Gbit/s WDM traffic is experimentally demonstrated. The developed switch features flexibility in bandwidth provisioning, scalability to higher traffic volumes, and backward compatibility with existing network implementations in a future-proof way

    Optical processing devices and techniques for next generation optical networks

    Get PDF
    Doutoramento em FísicaEste trabalho surge do interesse em substituir os nós de rede óptica baseados maioritariamente em electrónica por nós de rede baseados em tecnologia óptica. Espera-se que a tecnologia óptica permita maiores débitos binários na rede, maior transparência e maior eficiência através de novos paradigmas de comutação. Segundo esta visão, utilizou-se o MZI-SOA, um dispositivo semicondutor integrado hibridamente, para realizar funcionalidades de processamento óptico de sinal necessárias em nós de redes ópticas de nova geração. Nas novas redes ópticas são utilizados formatos de modulação avançados, com gestão da fase, pelo que foi estudado experimentalmente e por simulação o impacto da utilização destes formatos no desempenho do MZI-SOA na conversão de comprimento de onda e formato, em várias condições de operação. Foram derivadas regras de utilização para funcionamento óptimo. Foi também estudado o impacto da forma dos pulsos do sinal no desempenho do dispositivo. De seguida, o MZI-SOA foi utilizado para realizar funcionalidades temporais ao nível do bit e do pacote. Foi investigada a operação de um conversor de multiplexagem por divisão no comprimento de onda para multiplexagem por divisão temporal óptica, experimentalmente e por simulação, e de um compressor e descompressor de pacotes, por simulação. Para este último, foi investigada a operação com o MZI-SOA baseado em amplificadores ópticos de semicondutor com geometria de poço quântico e ponto quântico. Foi também realizado experimentalmente um ermutador de intervalos temporais que explora o MZI-SOA como conversor de comprimento de onda e usa um banco de linhas de atraso ópticas para introduzir no sinal um atraso seleccionável. Por fim, foi estudado analiticamente, experimentalmente e por simulação o impacto de diafonia em redes ópticas em diversas situações. Extendeu-se um modelo analítico de cálculo de desempenho para contemplar sinais distorcidos e afectados por diafonia. Estudou-se o caso de sinais muito filtrados e afectados por diafonia e mostrou-se que, para determinar correctamente as penalidades que ocorrem, ambos os efeitos devem ser considerados simultaneamente e não em separado. Foi estudada a escalabilidade limitada por diafonia de um comutador de intervalos temporais baseado em MZI-SOA a operar como comutador espacial. Mostrou-se também que sinais afectados fortemente por não-linearidades podem causar penalidades de diafonia mais elevadas do que sinais não afectados por não-linearidades. Neste trabalho foi demonstrado que o MZI-SOA permite construir vários e pertinentes circuitos ópticos, funcionando como bloco fundamental de construção, tendo sido o seu desempenho analisado, desde o nível de componente até ao nível de sistema. Tendo em conta as vantagens e desvantagens do MZI-SOA e os desenvolvimentos recentes de outras tecnologias, foram sugeridos tópicos de investigação com o intuito de evoluir para as redes ópticas de nova geração.The main motivation for this work is the desire to upgrade today’s opaque network nodes, which are plagued by inherent limitations of its constitutive electronics, by all-optical transparent network nodes. The all-optical promise consists in delivering ever higher bit rates, more transparency, and unsurpassed efficiency associated to sophisticated all-optical switching paradigms. In this light, the integrated MZI-SOA has been selected as the fundamental building block for this investigation of all-optical processing techniques and functions necessary for developing the next generation alloptical networks. Next generation optical networks will use advanced phase-managed modulation formats. Accordingly, the first simulation and experimental investigation assesses the performance of MZI-SOA based wavelength and format converter circuits for advanced modulation formats. Rules are derived for ensuring optimal MZI-SOA operation. The impact of the pulse shape on both the wavelength and format conversion processes is also addressed. More complex MZI-SOA based implementations of bit-level, and packet-level, time domain processing functions are analysed. A MZI-SOA based wavelength division multiplexing to time division multiplexing converter is experimentally investigated and compared to similar simulation results. The performance of packet compressor and decompressor circuit schemes, based on quantum well and quantum dots SOA devices, is analysed through simulation techniques. A MZI-SOA wavelength converter based selectable packet delay time slot interchanger, which uses an optical delay line bank, is experimentally demonstrated. Finally, the impact of crosstalk on all-optical networks is studied analytically, experimentally, and through simulations. An extant analytical model for assessing the performance of crosstalk impaired signals is improved for dealing also with distorted signals. Using the extended model, it is shown that heavily filtered signals are more seriously affected by crosstalk than unfiltered signals. Hence, accurate calculation of penalties stemming from both filtering and crosstalk, must model these effects jointly. The crosstalk limited scalability of a MZI-SOA space switched time slot interchanger is also assessed employing this method. An additional study points to the conclusion that crosstalk caused by signals impaired by non-linear effects can have a more significant detrimental impact on optical systems performance than that of the crosstalk caused by a signal unimpaired by non-linearities. On the whole, it has been demonstrated that the MZI-SOA is a suitable building block for a variety of optical processing circuits required for the next generation optical networks. Its performance capabilities have been established in several optical circuits, from the component up to the system level. Next steps towards the implementation of next generation optical networks have been suggested according to the recent developments and the MZI-SOA’s strengths and drawbacks, in order to pursue the goal of higher bit rate, more transparent, and efficient optical networks

    Investigation of the regenerative and cascadability properties of optical signal processing devices at high bit-rates.

    Get PDF
    This thesis investigates the use of Semiconductor Optical Amplifiers (SOA) for 10 and 40Gb/s all-optical 3R signal regeneration and wavelength conversion for application to advanced high-speed all-optical WDM networks. Detailed experimental characterisation of the magnitude and the time scales of inter-band nonlinear effects in SOA is carried out. The regenerative properties of SOA gates are theoretically investigated and related to the SOA physical parameters by means of deriving the SOA gate transfer function. A novel configuration for all-optical regeneration based on Polarisation Switching in an SOA-assisted Sagnac Interferometer (PSSI) is proposed and used to demonstrate, for the first time, multi-channel simultaneous 3R regeneration. This scheme allows to significantly enhance the switching frequency of the SOA, demonstrating error-free regeneration of 40Gb/s signal with long PRBS sequences using an SOA with carrier lifetime exceeding 250ps. The reshaping and retiming ability of the scheme are also assessed experimentally at bit-rate of 40Gb/s, to show the largest distortion tolerance range published to date for regeneration. The scheme is also used to demonstrate 40 to lOGb/s demultiplexing. The cascadability of optical regenerators and wavelength converters is also investigated experimentally. The impact of varying the inter-regenerator spacing in transmission with cascaded wavelength conversion and 3R regeneration over transoceanic distances, is experimentally investigated for the first time, using a novel reconfigurable fibre loop. These results show that a trade-off exists between the transmission signal Q-factor and the inter-regenerator spacing, which depends on the regenerator transfer function characteristics, and thus can be predicted from the SOA parameters. In 40Gb/s transmission with optical regeneration it was demonstrated that the use of an optical regenerator before the electrical receiver increases the power margin and maximum error-free transmission distance at 40Gb/s in excess of 100km. Finally a novel concept for multi-channel wavelength conversion and regeneration is presented utilising an integrated SOA array in a novel configuration to demonstrate, for the first time, simultaneous regenerative wavelength conversion of 1 OGb/s signals. This also shows the potential for large scale monolithic integration for optical processing applications in WDM networks

    The European BOOM Project: Silicon Photonics for High-Capacity Optical Packet Routers

    Full text link

    Node design in optical packet switched networks

    Get PDF

    Cross-layer modeling and optimization of next-generation internet networks

    Get PDF
    Scaling traditional telecommunication networks so that they are able to cope with the volume of future traffic demands and the stringent European Commission (EC) regulations on emissions would entail unaffordable investments. For this very reason, the design of an innovative ultra-high bandwidth power-efficient network architecture is nowadays a bold topic within the research community. So far, the independent evolution of network layers has resulted in isolated, and hence, far-from-optimal contributions, which have eventually led to the issues today's networks are facing such as inefficient energy strategy, limited network scalability and flexibility, reduced network manageability and increased overall network and customer services costs. Consequently, there is currently large consensus among network operators and the research community that cross-layer interaction and coordination is fundamental for the proper architectural design of next-generation Internet networks. This thesis actively contributes to the this goal by addressing the modeling, optimization and performance analysis of a set of potential technologies to be deployed in future cross-layer network architectures. By applying a transversal design approach (i.e., joint consideration of several network layers), we aim for achieving the maximization of the integration of the different network layers involved in each specific problem. To this end, Part I provides a comprehensive evaluation of optical transport networks (OTNs) based on layer 2 (L2) sub-wavelength switching (SWS) technologies, also taking into consideration the impact of physical layer impairments (PLIs) (L0 phenomena). Indeed, the recent and relevant advances in optical technologies have dramatically increased the impact that PLIs have on the optical signal quality, particularly in the context of SWS networks. Then, in Part II of the thesis, we present a set of case studies where it is shown that the application of operations research (OR) methodologies in the desing/planning stage of future cross-layer Internet network architectures leads to the successful joint optimization of key network performance indicators (KPIs) such as cost (i.e., CAPEX/OPEX), resources usage and energy consumption. OR can definitely play an important role by allowing network designers/architects to obtain good near-optimal solutions to real-sized problems within practical running times
    corecore