47,842 research outputs found

    Spurious, Emergent Laws in Number Worlds

    Full text link
    We study some aspects of the emergence of logos from chaos on a basal model of the universe using methods and techniques from algorithmic information and Ramsey theories. Thereby an intrinsic and unusual mixture of meaningful and spurious, emerging laws surfaces. The spurious, emergent laws abound, they can be found almost everywhere. In accord with the ancient Greek theogony one could say that logos, the Gods and the laws of the universe, originate from "the void," or from chaos, a picture which supports the unresolvable/irreducible lawless hypothesis. The analysis presented in this paper suggests that the "laws" discovered in science correspond merely to syntactical correlations, are local and not universal.Comment: 24 pages, invited contribution to "Contemporary Natural Philosophy and Philosophies - Part 2" - Special Issue of the journal Philosophie

    What is quantum in quantum randomness?

    Full text link
    It is often said that quantum and classical randomness are of different nature, the former being ontological and the latter epistemological. However, so far the question of "What is quantum in quantum randomness", i.e. what is the impact of quantization and discreteness on the nature of randomness, remains to answer. In a first part, we explicit the differences between quantum and classical randomness within a recently proposed ontology for quantum mechanics based on contextual objectivity. In this view, quantum randomness is the result of contextuality and quantization. We show that this approach strongly impacts the purposes of quantum theory as well as its areas of application. In particular, it challenges current programs inspired by classical reductionism, aiming at the emergence of the classical world from a large number of quantum systems. In a second part, we analyze quantum physics and thermodynamics as theories of randomness, unveiling their mutual influences. We finally consider new technological applications of quantum randomness opened in the emerging field of quantum thermodynamics.Comment: This article will appear in Philosophical Transaction A, following the Royal Society Symposium "Foundations of quantum mechanics and their impact on Contemporary Society

    On the Nature of Intelligence: The Relevance of Statistical Mechanics

    Get PDF
    A conundrum that results from the normal distribution of intelligence is explored. The conundrum concerns the chief characteristic of intelligence, the ability to find order in the world (or to know the world) on the one hand, and the random processes that are the foundation of the normal distribution on the other. Statistical mechanics is explored to help in understanding the relation between order and randomness in intelligence. In statistical mechanics, ordered phenomena, like temperature or chemical potential, can be derived from random processes, and empirical data indicate that such a relationship between ordered phenomena and random processes must exist as regards intellect. The apparent incongruity in having both order and randomness characterize intelligence is found to be a feature that allows for intelligence to be known without recourse to underpinnings that are independent of the knowing individual. The contrast of ordered processes and random processes indicates that probabilistic knowledge of the world, stemming from the latter processes, is a basis for knowing the world in a fundamental manner, whether the concern is the physical world or mind. It is likely that physiological concomitants involved in the development, and perhaps current operation, of intellect also demonstrate the same relationship between ordered and random phenomena found on a psychological level. On a microscopic level, it is expected that random neurophysiological processes would give rise to ordered patterns of neurophysiological activity on a macroscopic level

    On the exit statistics theorem of many particle quantum scattering

    Full text link
    We review the foundations of the scattering formalism for one particle potential scattering and discuss the generalization to the simplest case of many non interacting particles. We point out that the "straight path motion" of the particles, which is achieved in the scattering regime, is at the heart of the crossing statistics of surfaces, which should be thought of as detector surfaces. We sketch a proof of the relevant version of the many particle flux across surfaces theorem and discuss what needs to be proven for the foundations of scattering theory in this context.Comment: 15 pages, 4 figures; to appear in the proceedings of the conference "Multiscale methods in Quantum Mechanics", Accademia dei Lincei, Rome, December 16-20, 200

    A mechanism for randomness

    Full text link
    We investigate explicit functions that can produce truly random numbers. We use the analytical properties of the explicit functions to show that certain class of autonomous dynamical systems can generate random dynamics. This dynamics presents fundamental differences with the known chaotic systems. We present realphysical systems that can produce this kind of random time-series. We report theresults of real experiments with nonlinear circuits containing direct evidence for this new phenomenon. In particular, we show that a Josephson junction coupled to a chaotic circuit can generate unpredictable dynamics. Some applications are discussed.Comment: Accepted in Physics Letters A (2002). 11 figures (.eps
    corecore