23,194 research outputs found

    Robust Decision Trees Against Adversarial Examples

    Full text link
    Although adversarial examples and model robustness have been extensively studied in the context of linear models and neural networks, research on this issue in tree-based models and how to make tree-based models robust against adversarial examples is still limited. In this paper, we show that tree based models are also vulnerable to adversarial examples and develop a novel algorithm to learn robust trees. At its core, our method aims to optimize the performance under the worst-case perturbation of input features, which leads to a max-min saddle point problem. Incorporating this saddle point objective into the decision tree building procedure is non-trivial due to the discrete nature of trees --- a naive approach to finding the best split according to this saddle point objective will take exponential time. To make our approach practical and scalable, we propose efficient tree building algorithms by approximating the inner minimizer in this saddle point problem, and present efficient implementations for classical information gain based trees as well as state-of-the-art tree boosting models such as XGBoost. Experimental results on real world datasets demonstrate that the proposed algorithms can substantially improve the robustness of tree-based models against adversarial examples

    CleanML: A Study for Evaluating the Impact of Data Cleaning on ML Classification Tasks

    Full text link
    Data quality affects machine learning (ML) model performances, and data scientists spend considerable amount of time on data cleaning before model training. However, to date, there does not exist a rigorous study on how exactly cleaning affects ML -- ML community usually focuses on developing ML algorithms that are robust to some particular noise types of certain distributions, while database (DB) community has been mostly studying the problem of data cleaning alone without considering how data is consumed by downstream ML analytics. We propose a CleanML study that systematically investigates the impact of data cleaning on ML classification tasks. The open-source and extensible CleanML study currently includes 14 real-world datasets with real errors, five common error types, seven different ML models, and multiple cleaning algorithms for each error type (including both commonly used algorithms in practice as well as state-of-the-art solutions in academic literature). We control the randomness in ML experiments using statistical hypothesis testing, and we also control false discovery rate in our experiments using the Benjamini-Yekutieli (BY) procedure. We analyze the results in a systematic way to derive many interesting and nontrivial observations. We also put forward multiple research directions for researchers.Comment: published in ICDE 202
    • …
    corecore