1,838 research outputs found

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure

    Towards real-world complexity: an introduction to multiplex networks

    Full text link
    Many real-world complex systems are best modeled by multiplex networks of interacting network layers. The multiplex network study is one of the newest and hottest themes in the statistical physics of complex networks. Pioneering studies have proven that the multiplexity has broad impact on the system's structure and function. In this Colloquium paper, we present an organized review of the growing body of current literature on multiplex networks by categorizing existing studies broadly according to the type of layer coupling in the problem. Major recent advances in the field are surveyed and some outstanding open challenges and future perspectives will be proposed.Comment: 20 pages, 10 figure

    Underestimated cost of targeted attacks on complex networks

    Full text link
    The robustness of complex networks under targeted attacks is deeply connected to the resilience of complex systems, i.e., the ability to make appropriate responses to the attacks. In this article, we investigated the state-of-the-art targeted node attack algorithms and demonstrate that they become very inefficient when the cost of the attack is taken into consideration. In this paper, we made explicit assumption that the cost of removing a node is proportional to the number of adjacent links that are removed, i.e., higher degree nodes have higher cost. Finally, for the case when it is possible to attack links, we propose a simple and efficient edge removal strategy named Hierarchical Power Iterative Normalized cut (HPI-Ncut).The results on real and artificial networks show that the HPI-Ncut algorithm outperforms all the node removal and link removal attack algorithms when the cost of the attack is taken into consideration. In addition, we show that on sparse networks, the complexity of this hierarchical power iteration edge removal algorithm is only O(nlog2+ϵ(n))O(n\log^{2+\epsilon}(n)).Comment: 14 pages, 7 figure

    Robustness and modular structure in networks

    Get PDF
    Complex networks have recently attracted much interest due to their prevalence in nature and our daily lives [1, 2]. A critical property of a network is its resilience to random breakdown and failure [3-6], typically studied as a percolation problem [7-9] or by modeling cascading failures [10-12]. Many complex systems, from power grids and the Internet to the brain and society [13-15], can be modeled using modular networks comprised of small, densely connected groups of nodes [16, 17]. These modules often overlap, with network elements belonging to multiple modules [18, 19]. Yet existing work on robustness has not considered the role of overlapping, modular structure. Here we study the robustness of these systems to the failure of elements. We show analytically and empirically that it is possible for the modules themselves to become uncoupled or non-overlapping well before the network disintegrates. If overlapping modular organization plays a role in overall functionality, networks may be far more vulnerable than predicted by conventional percolation theory.Comment: 14 pages, 9 figure

    Using interdependency matrices to mitigate targeted attacks on interdependent networks: A case study involving a power grid and backbone telecommunications networks

    Get PDF
    Analysis of the interdependencies between interconnected critical infrastructures can help enhance the robustness of the individual infrastructures as well as the overall interconnected infrastructures. One of the most studied interdependent critical infrastructure network scenarios is a power grid connected to a backbone telecommunications network. In this interdependent infrastructure scenario, the robustness of the entire system is usually analyzed in the context of cascading failure models in the power grid. However, this paper focuses on targeted attacks, where an attack on a telecommunications network node directly affects a connected power grid node, and vice versa. Cascading failures are outside the scope of this paper because the objective is to enhance the robustness of the interconnections between the infrastructures. In order to mitigate the impacts of targeted attacks on the interdependent infrastructures, three interdependency matrices for connecting the infrastructures are specified and analyzed. The analysis identifies the interdependency matrix that best reduces the impacts of targeted attacks and the propagation of failures between the infrastructures. Additionally, the impacts of interconnecting a power grid to different telecommunications networks, each with different susceptibilities to targeted attacks, is evaluate
    corecore