3,570 research outputs found

    Detecting Core-Periphery Structures by Surprise

    Get PDF
    Detecting the presence of mesoscale structures in complex networks is of primary importance. This is especially true for financial networks, whose structural organization deeply affects their resilience to events like default cascades, shocks propagation, etc. Several methods have been proposed, so far, to detect communities, i.e. groups of nodes whose connectivity is significantly large. Communities, however do not represent the only kind of mesoscale structures characterizing real-world networks: other examples are provided by bow-tie structures, core-periphery structures and bipartite structures. Here we propose a novel method to detect statistically-signifcant bimodular structures, i.e. either bipartite or core-periphery ones. It is based on a modification of the surprise, recently proposed for detecting communities. Our variant allows for bimodular nodes partitions to be revealed, by letting links to be placed either 1) within the core part and between the core and the periphery parts or 2) just between the (empty) layers of a bipartite network. From a technical point of view, this is achieved by employing a multinomial hypergeometric distribution instead of the traditional (binomial) hypergeometric one; as in the latter case, this allows a p-value to be assigned to any given (bi)partition of the nodes. To illustrate the performance of our method, we report the results of its application to several real-world networks, including social, economic and financial ones.Comment: 11 pages, 10 figures. Python code freely available at https://github.com/jeroenvldj/bimodular_surpris

    Minimum Cuts in Geometric Intersection Graphs

    Full text link
    Let D\mathcal{D} be a set of nn disks in the plane. The disk graph GDG_\mathcal{D} for D\mathcal{D} is the undirected graph with vertex set D\mathcal{D} in which two disks are joined by an edge if and only if they intersect. The directed transmission graph GDG^{\rightarrow}_\mathcal{D} for D\mathcal{D} is the directed graph with vertex set D\mathcal{D} in which there is an edge from a disk D1DD_1 \in \mathcal{D} to a disk D2DD_2 \in \mathcal{D} if and only if D1D_1 contains the center of D2D_2. Given D\mathcal{D} and two non-intersecting disks s,tDs, t \in \mathcal{D}, we show that a minimum ss-tt vertex cut in GDG_\mathcal{D} or in GDG^{\rightarrow}_\mathcal{D} can be found in O(n3/2polylogn)O(n^{3/2}\text{polylog} n) expected time. To obtain our result, we combine an algorithm for the maximum flow problem in general graphs with dynamic geometric data structures to manipulate the disks. As an application, we consider the barrier resilience problem in a rectangular domain. In this problem, we have a vertical strip SS bounded by two vertical lines, LL_\ell and LrL_r, and a collection D\mathcal{D} of disks. Let aa be a point in SS above all disks of D\mathcal{D}, and let bb a point in SS below all disks of D\mathcal{D}. The task is to find a curve from aa to bb that lies in SS and that intersects as few disks of D\mathcal{D} as possible. Using our improved algorithm for minimum cuts in disk graphs, we can solve the barrier resilience problem in O(n3/2polylogn)O(n^{3/2}\text{polylog} n) expected time.Comment: 11 pages, 4 figure

    Predicting tipping points in mutualistic networks through dimension reduction

    Get PDF
    This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714958115/-/DCSupplemental.Peer reviewedPublisher PD

    Robustness and modular structure in networks

    Get PDF
    Complex networks have recently attracted much interest due to their prevalence in nature and our daily lives [1, 2]. A critical property of a network is its resilience to random breakdown and failure [3-6], typically studied as a percolation problem [7-9] or by modeling cascading failures [10-12]. Many complex systems, from power grids and the Internet to the brain and society [13-15], can be modeled using modular networks comprised of small, densely connected groups of nodes [16, 17]. These modules often overlap, with network elements belonging to multiple modules [18, 19]. Yet existing work on robustness has not considered the role of overlapping, modular structure. Here we study the robustness of these systems to the failure of elements. We show analytically and empirically that it is possible for the modules themselves to become uncoupled or non-overlapping well before the network disintegrates. If overlapping modular organization plays a role in overall functionality, networks may be far more vulnerable than predicted by conventional percolation theory.Comment: 14 pages, 9 figure

    Network Sensitivity of Systemic Risk

    Get PDF
    A growing body of studies on systemic risk in financial markets has emphasized the key importance of taking into consideration the complex interconnections among financial institutions. Much effort has been put in modeling the contagion dynamics of financial shocks, and to assess the resilience of specific financial markets - either using real network data, reconstruction techniques or simple toy networks. Here we address the more general problem of how shock propagation dynamics depends on the topological details of the underlying network. To this end we consider different realistic network topologies, all consistent with balance sheets information obtained from real data on financial institutions. In particular, we consider networks of varying density and with different block structures, and diversify as well in the details of the shock propagation dynamics. We confirm that the systemic risk properties of a financial network are extremely sensitive to its network features. Our results can aid in the design of regulatory policies to improve the robustness of financial markets
    corecore