387,122 research outputs found

    On the automated interpretation and indexing of American football

    Full text link
    This work combines natural language understanding and image processing with incremental learning to develop a system that can automatically interpret and index American Football. We have developed a model for representing spatio-temporal characteristics of multiple objects in dynamic scenes in this domain. Our representation combines expert knowledge, domain knowledge, spatial knowledge and temporal knowledge. We also present an incremental learning algorithm to improve the knowledge base as well as to keep previously developed concepts consistent with new data. The advantages of the incremental learning algorithm are that is that it does not split concepts and it generates a compact conceptual hierarchy which does not store instances

    Typicality, graded membership, and vagueness

    Get PDF
    This paper addresses theoretical problems arising from the vagueness of language terms, and intuitions of the vagueness of the concepts to which they refer. It is argued that the central intuitions of prototype theory are sufficient to account for both typicality phenomena and psychological intuitions about degrees of membership in vaguely defined classes. The first section explains the importance of the relation between degrees of membership and typicality (or goodness of example) in conceptual categorization. The second and third section address arguments advanced by Osherson and Smith (1997), and Kamp and Partee (1995), that the two notions of degree of membership and typicality must relate to fundamentally different aspects of conceptual representations. A version of prototype theory—the Threshold Model—is proposed to counter these arguments and three possible solutions to the problems of logical selfcontradiction and tautology for vague categorizations are outlined. In the final section graded membership is related to the social construction of conceptual boundaries maintained through language use

    Epistemic and social scripts in computer-supported collaborative learning

    Get PDF
    Collaborative learning in computer-supported learning environments typically means that learners work on tasks together, discussing their individual perspectives via text-based media or videoconferencing, and consequently acquire knowledge. Collaborative learning, however, is often sub-optimal with respect to how learners work on the concepts that are supposed to be learned and how learners interact with each other. One possibility to improve collaborative learning environments is to conceptualize epistemic scripts, which specify how learners work on a given task, and social scripts, which structure how learners interact with each other. In this contribution, two studies will be reported that investigated the effects of epistemic and social scripts in a text-based computer-supported learning environment and in a videoconferencing learning environment in order to foster the individual acquisition of knowledge. In each study the factors ‘epistemic script’ and ‘social script’ have been independently varied in a 2×2-factorial design. 182 university students of Educational Science participated in these two studies. Results of both studies show that social scripts can be substantially beneficial with respect to the individual acquisition of knowledge, whereas epistemic scripts apparently do not to lead to the expected effects

    Integrative priming occurs rapidly and uncontrollably during lexical processing

    Get PDF
    Lexical priming, whereby a prime word facilitates recognition of a related target word (e.g., nurse ? doctor), is typically attributed to association strength, semantic similarity, or compound familiarity. Here, the authors demonstrate a novel type of lexical priming that occurs among unassociated, dissimilar, and unfamiliar concepts (e.g., horse ? doctor). Specifically, integrative priming occurs when a prime word can be easily integrated with a target word to create a unitary representation. Across several manipulations of timing (stimulus onset asynchrony) and list context (relatedness proportion), lexical decisions for the target word were facilitated when it could be integrated with the prime word. Moreover, integrative priming was dissociated from both associative priming and semantic priming but was comparable in terms of both prevalence (across participants) and magnitude (within participants). This observation of integrative priming challenges present models of lexical priming, such as spreading activation, distributed representation, expectancy, episodic retrieval, and compound cue models. The authors suggest that integrative priming may be explained by a role activation model of relational integration

    Epistemic and Social Scripts in Computer-Supported Collaborative Learning

    Get PDF
    Collaborative learning in computer-supported learning environments typically means that learners work on tasks together, discussing their individual perspectives via text-based media or videoconferencing, and consequently acquire knowledge. Collaborative learning, however, is often sub-optimal with respect to how learners work on the concepts that are supposed to be learned and how learners interact with each other. Therefore, instructional support needs to be implemented into computer-supported collaborative learning environments. One possibility to improve collaborative learning environments is to conceptualize scripts that structure epistemic activities and social interactions of learners. In this contribution, two studies will be reported that investigated the effects of epistemic and social scripts in a text-based computer-supported learning environment and in a videoconferencing learning environment in order to foster the individual acquisition of knowledge. In each study the factors "epistemic script" and "social script" have been independently varied in a 2×2-factorial design. 182 university students of Educational Science participated in these two studies. Results of both studies show that social scripts can be substantially beneficial with respect to the individual acquisition of knowledge, whereas epistemic scripts apparently do not lead to the expected effects.Unter kooperativem Lernen in computerunterstützten Lernumgebungen versteht man typischerweise, dass Lernende Wissen erwerben indem sie gemeinsam Aufgaben bearbeiten und dabei ihre individuellen Perspektiven mittels textbasierter Medien oder in Videokonferenzen diskutieren. Kooperatives Lernen scheint aber häufig suboptimal zu sein in Bezug auf die inhaltliche Bearbeitung der zu lernenden Konzepte sowie hinsichtlich der sozialen Interaktionen der Lernenden. Eine Möglichkeit kooperative Lernumgebungen zu verbessern besteht darin, Skripts zu konzeptualisieren, die epistemische Aktivitäten und soziale Interaktionen von Lernenden unterstützen. In diesem Beitrag werden zwei Studien berichtet, die die Wirkungen epistemischer und sozialer Skripts auf den individuellen Wissenserwerb in einer text- bzw. einer videobasierten computerunterstützten Lernumgebung untersuchen. In beiden Studien wurden die Faktoren "epistemisches Skript" und "soziales Skript" unabhängig voneinander in einem 2×2-faktoriellen Design miteinander variiert. 182 Studierende der Pädagogik der LMU München nahmen an diesen beiden Studien teil. Die Ergebnisse beider Studien deuten darauf hin, dass soziale Skripts individuellen Wissenserwerb substanziell fördern können, während epistemische Skripts scheinbar nicht zu den erwarteten Ergebnissen führen

    Multi-Label Zero-Shot Human Action Recognition via Joint Latent Ranking Embedding

    Get PDF
    Human action recognition refers to automatic recognizing human actions from a video clip. In reality, there often exist multiple human actions in a video stream. Such a video stream is often weakly-annotated with a set of relevant human action labels at a global level rather than assigning each label to a specific video episode corresponding to a single action, which leads to a multi-label learning problem. Furthermore, there are many meaningful human actions in reality but it would be extremely difficult to collect/annotate video clips regarding all of various human actions, which leads to a zero-shot learning scenario. To the best of our knowledge, there is no work that has addressed all the above issues together in human action recognition. In this paper, we formulate a real-world human action recognition task as a multi-label zero-shot learning problem and propose a framework to tackle this problem in a holistic way. Our framework holistically tackles the issue of unknown temporal boundaries between different actions for multi-label learning and exploits the side information regarding the semantic relationship between different human actions for knowledge transfer. Consequently, our framework leads to a joint latent ranking embedding for multi-label zero-shot human action recognition. A novel neural architecture of two component models and an alternate learning algorithm are proposed to carry out the joint latent ranking embedding learning. Thus, multi-label zero-shot recognition is done by measuring relatedness scores of action labels to a test video clip in the joint latent visual and semantic embedding spaces. We evaluate our framework with different settings, including a novel data split scheme designed especially for evaluating multi-label zero-shot learning, on two datasets: Breakfast and Charades. The experimental results demonstrate the effectiveness of our framework.Comment: 27 pages, 10 figures and 7 tables. Technical report submitted to a journal. More experimental results/references were added and typos were correcte

    Investigating Differences between Graphical and Textual Declarative Process Models

    Full text link
    Declarative approaches to business process modeling are regarded as well suited for highly volatile environments, as they enable a high degree of flexibility. However, problems in understanding declarative process models often impede their adoption. Particularly, a study revealed that aspects that are present in both imperative and declarative process modeling languages at a graphical level-while having different semantics-cause considerable troubles. In this work we investigate whether a notation that does not contain graphical lookalikes, i.e., a textual notation, can help to avoid this problem. Even though a textual representation does not suffer from lookalikes, in our empirical study it performed worse in terms of error rate, duration and mental effort, as the textual representation forces the reader to mentally merge the textual information. Likewise, subjects themselves expressed that the graphical representation is easier to understand
    corecore