691 research outputs found

    Nondestructive Evaluation and Structural Health Monitoring Based on Highly Nonlinear Solitary Waves

    Get PDF
    Recent decades have witnessed the rapid growth and acceptance of nondestructive evaluation (NDE) techniques in assessment of infrastructures' conditions. Assessing the conditions of infrastructures is important to determine their safety and reliability which have a great impact on today's society. The existing NDE techniques include acoustics, ultrasound, radiology, thermography, electromagnetic method, optical method, and so on. Properly employed NDE techniques can reduce the maintenance and repair cost and improve the reliability of the infrastructures. In the last two decades, the study of the highly nonlinear solitary waves (HNSWs) has received much attention. Most of these studies focused on the propagation of HNSWs in granular systems, but little work on applications of HNSW-based NDE method has been done. HNSWs are mechanical waves that can form and travel in highly nonlinear systems, one-dimensional chain of identical spheres is one of the most common systems that can support the generation and propagation of HNSWs. In the study presented in this dissertation, a new NDE technique based on the generation and propagation of HNSWs was investigated and applied to different structural materials. First, fundamental research on the generation of HNSWs in a chain of stainless steel beads by laser pulses was conducted. The results showed that the laser-based generation of HNSWs produces results that are equivalent to those obtained by means of a mechanical striker. Then, the feasibility of tuning HNSWs by electromagnetically induced precompression was demonstrated experimentally. By changing the precompression on the chain of particles, the properties of the HNSWs could be tuned in a wide range. Then a HNSW-based transducer was designed and built. The transducer was remotely and automatically controlled by National Instruments PXI running Labview. The ability of the new transducer to generate repeatable HNSWs was assessed. Finally, the HNSW transducer was used to monitor cement setting, concrete curing and epoxy curing, to evaluate the bond condition of an aluminum lap-joint, and to detect the impact damages in a composite plate. The results showed that the HNSW-based technique is promising for structural NDE. A pilot numerical study on acoustic lens which is a device can focus the acoustic waves at a focal point was also conducted

    On the Application of Highly Nonlinear Solitary Waves for Nondestructive Evaluation

    Get PDF
    Highly nonlinear solitary waves (HNSWs) are compact nondispersive waves that can form and propagate in slightly compacted 1D chains of identical particles. Such a 1D chain is a heterogeneous lattice, which holds nonlinearity due to geometry and periodicity. Depending on the dynamic excitation, the particles support linear, weakly nonlinear, or highly nonlinear waves. The latter are triggered when the excitation generates a dynamic force much higher than the initial precompression. Over the last decade, there has been a great effort to use HNSWs in engineering applications such as shock absorbers, energy harvesting, and nondestructive evaluation (NDE). For NDE application, many examples available in the literature show that the stiffness of the material/structure in contact with a chain of particles, where HNSWs are generated, affects the number, amplitude, and arrival time of the solitary waves. In this dissertation, the dynamic interaction between HNSW and structure is investigated for three NDE applications: (1) determination of the elastic modulus and ultimate strength of concrete material, (2) measurement of the internal pressure and bouncing characteristics of tennis balls, and (3) estimation of axial stress in beams and continuous welded rails (CWRs). In the concrete application, the aim is to study the effect of water-to-cement ratio on the entire mix and on the surface of fresh concrete (simulating the undesirable water added to the fresh concrete by rain) on the solitary wave features. An experimental setup including seven solitary wave transducers and a numerical analysis simulating concrete samples as semi-infinite material is conducted to prove the feasibility and accuracy of the proposed HNSW method

    Acoustic and Elastic Waves: Recent Trends in Science and Engineering

    Get PDF
    The present Special Issue intends to explore new directions in the field of acoustics and ultrasonics. The interest includes, but is not limited to, the use of acoustic technology for condition monitoring of materials and structures. Topics of interest (among others): • Acoustic emission in materials and structures (without material limitation) • Innovative cases of ultrasonic inspection • Wave dispersion and waveguides • Monitoring of innovative materials • Seismic waves • Vibrations, damping and noise control • Combination of mechanical wave techniques with other types for structural health monitoring purposes. Experimental and numerical studies are welcome

    Detecting the Presence of High Water-to-Cement Ratio in Concrete Surfaces Using Highly Nonlinear Solitary Waves

    Get PDF
    We describe a nondestructive evaluation (NDE) method based on the propagation of highly nonlinear solitary waves (HNSWs) to determine the excess of water on the surface of existing concrete structures. HNSWs are induced in a one-dimensional granular chain placed in contact with the concrete to be tested. The chain is part of a built-in transducer designed and assembled to exploit the dynamic interaction between the particles and the concrete. The hypothesis is that the interaction depends on the stiffness of the concrete and influences the time-of-flight of the solitary pulse reflected at the transducer/concrete interface. Two sets of experiments were conducted. In the first set, eighteen concrete cylinders with different water-to-cement (w/c) ratios were cast and tested in order to obtain baseline data to link the ratio to the time of flight. Then, sixteen short beams with fixed w/c ratio, but subject to water in excess at one surface, were cast. The novel NDE method was applied along with the conventional ultrasonic pulse velocity technique in order to determine advantages and limitations of the proposed approach. The results show that the time of flight detected the excess of water in the beams. In the future, the proposed method may be employed in the field to evaluate rapidly and reliably the condition of existing concrete structures and, in particular, concrete decks

    Composite modelling of subaerial landslide-tsunamis in different water body geometries and novel insight into slide and wave kinematics

    Get PDF
    This article addresses subaerial landslide-tsunamis with a composite (experimental-numerical) modelling approach. A shortcoming of generic empirical equations used for hazard assessment is that they are commonly based on the two idealised water body geometries of a wave channel (2D) or a wave basin (3D). A recent systematic comparison of 2D and 3D physical block model tests revealed wave amplitude differences of up to a factor of 17. The present article investigates two of these recently presented 2D-3D test pairs in detail, involving a solitary-like wave (scenario 1) and Stokes-like waves (scenario 2). Results discussed include slide and water particle kinematics and novel pressure measurements on the slide front. Instantaneous slide-water interaction power graphs are derived and potential and kinetic wave energies are analysed. Solitary wave theory is found most appropriate to describe the wave kinematics associated with scenario 1, whereas Stokes theory accurately describes the tsunami in scenario 2. The data of both scenarios are further used to calibrate the smoothed particle hydrodynamics (SPH) code DualSPHysics v3.1, which includes a discrete element method (DEM)-based model to simulate the slide-ramp interaction. Five intermediate geometries, lying between the ideal 2D and 3D cases, are then investigated purely numerically. For a “channel” geometry with a diverging side wall angle of 7.5°, the wave amplitudes along the slide axes were found to lie approximately halfway between the values observed in 2D and 3D. At 45°, the amplitudes are practically identical to those in 3D. The study finally discusses the implications of the findings for engineering applications and illustrates the potential and current limitations of DualSPHysics for landslide-tsunami hazard assessment
    • …
    corecore