892 research outputs found

    Labelled Modal Tableaux

    Get PDF
    Labelled tableaux are extensions of semantic tableaux with annotations (labels, indices) whose main function is to enrich the modal object language with semantic elements. This paper consists of three parts. In the first part we consider some options for labels: simple constant labels vs labels with free variables, logic depended inference rules vs labels manipulation based on a label algebra. In the second and third part we concentrate on a particular labelled tableaux system called KEM using free variable and a specialised label algebra. Specifically in the second part we show how labelled tableaux (KEM) can account for different types of logics (e.g., non-normal modal logics and conditional logics). In the third and final part we investigate the relative complexity of labelled tableaux systems and we show that the uses of KEM's label algebra can lead to speed up on proofs

    Automated Reasoning over Deontic Action Logics with Finite Vocabularies

    Full text link
    In this paper we investigate further the tableaux system for a deontic action logic we presented in previous work. This tableaux system uses atoms (of a given boolean algebra of action terms) as labels of formulae, this allows us to embrace parallel execution of actions and action complement, two action operators that may present difficulties in their treatment. One of the restrictions of this logic is that it uses vocabularies with a finite number of actions. In this article we prove that this restriction does not affect the coherence of the deduction system; in other words, we prove that the system is complete with respect to language extension. We also study the computational complexity of this extended deductive framework and we prove that the complexity of this system is in PSPACE, which is an improvement with respect to related systems.Comment: In Proceedings LAFM 2013, arXiv:1401.056

    Cut-free Calculi and Relational Semantics for Temporal STIT Logics

    Get PDF
    We present cut-free labelled sequent calculi for a central formalism in logics of agency: STIT logics with temporal operators. These include sequent systems for Ldm , Tstit and Xstit. All calculi presented possess essential structural properties such as contraction- and cut-admissibility. The labelled calculi G3Ldm and G3Tstit are shown sound and complete relative to irreflexive temporal frames. Additionally, we extend current results by showing that also Xstit can be characterized through relational frames, omitting the use of BT+AC frames

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Practical Reasoning for Very Expressive Description Logics

    Full text link
    Description Logics (DLs) are a family of knowledge representation formalisms mainly characterised by constructors to build complex concepts and roles from atomic ones. Expressive role constructors are important in many applications, but can be computationally problematical. We present an algorithm that decides satisfiability of the DL ALC extended with transitive and inverse roles and functional restrictions with respect to general concept inclusion axioms and role hierarchies; early experiments indicate that this algorithm is well-suited for implementation. Additionally, we show that ALC extended with just transitive and inverse roles is still in PSPACE. We investigate the limits of decidability for this family of DLs, showing that relaxing the constraints placed on the kinds of roles used in number restrictions leads to the undecidability of all inference problems. Finally, we describe a number of optimisation techniques that are crucial in obtaining implementations of the decision procedures, which, despite the worst-case complexity of the problem, exhibit good performance with real-life problems

    Modal mu-calculi

    Get PDF

    A Faster Tableau for CTL*

    Full text link
    There have been several recent suggestions for tableau systems for deciding satisfiability in the practically important branching time temporal logic known as CTL*. In this paper we present a streamlined and more traditional tableau approach built upon the author's earlier theoretical work. Soundness and completeness results are proved. A prototype implementation demonstrates the significantly improved performance of the new approach on a range of test formulas. We also see that it compares favourably to state of the art, game and automata based decision procedures.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Clausal Resolution for Modal Logics of Confluence

    Get PDF
    We present a clausal resolution-based method for normal multimodal logics of confluence, whose Kripke semantics are based on frames characterised by appropriate instances of the Church-Rosser property. Here we restrict attention to eight families of such logics. We show how the inference rules related to the normal logics of confluence can be systematically obtained from the parametrised axioms that characterise such systems. We discuss soundness, completeness, and termination of the method. In particular, completeness can be modularly proved by showing that the conclusions of each newly added inference rule ensures that the corresponding conditions on frames hold. Some examples are given in order to illustrate the use of the method.Comment: 15 pages, 1 figure. Preprint of the paper accepted to IJCAR 201
    corecore