8,482 research outputs found

    An extended orthogonal forward regression algorithm for system identification using entropy

    Get PDF
    In this paper, a fast identification algorithm for nonlinear dynamic stochastic system identification is presented. The algorithm extends the classical Orthogonal Forward Regression (OFR) algorithm so that instead of using the Error Reduction Ratio (ERR) for term selection, a new optimality criterion —Shannon’s Entropy Power Reduction Ratio(EPRR) is introduced to deal with both Gaussian and non-Gaussian signals. It is shown that the new algorithm is both fast and reliable and examples are provided to illustrate the effectiveness of the new approach

    Organization of the magnetosphere during substorms

    Get PDF
    The change in degree of organization of the magnetosphere during substorms is investigated by analyzing various geomagnetic indices, as well as interplanetary magnetic field z-component and solar wind flow speed. We conclude that the magnetosphere self-organizes globally during substorms, but neither the magnetosphere nor the solar wind become more predictable in the course of a substorm. This conclusion is based on analysis of five hundred substorms in the period from 2000 to 2002. A minimal dynamic-stochastic model of the driven magnetosphere that reproduces many statistical features of substorm indices is discussed

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    Model estimation of cerebral hemodynamics between blood flow and volume changes: a data-based modeling approach

    Get PDF
    It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV

    Information-theoretic measurements of coupling between structure and dynamics in glass-formers

    Get PDF
    We analyse the connections between structure and dynamics in two model glass-formers, using the mutual information between an initial configuration and the ensuing dynamics to compare the predictive value of different structural observables. We consider the predictive power of normal modes, locally favoured structures, and coarse-grained measurements of local energy and density. The mutual information allows the influence of the liquid structure on the dynamics to be analysed quantitatively as a function of time, showing that normal modes give the most useful predictions on short time scales while local energy and density are most strongly predictive at long times.Comment: 10 pages, 7 fig

    Control-theoretic Approach to Communication with Feedback: Fundamental Limits and Code Design

    Full text link
    Feedback communication is studied from a control-theoretic perspective, mapping the communication problem to a control problem in which the control signal is received through the same noisy channel as in the communication problem, and the (nonlinear and time-varying) dynamics of the system determine a subclass of encoders available at the transmitter. The MMSE capacity is defined to be the supremum exponential decay rate of the mean square decoding error. This is upper bounded by the information-theoretic feedback capacity, which is the supremum of the achievable rates. A sufficient condition is provided under which the upper bound holds with equality. For the special class of stationary Gaussian channels, a simple application of Bode's integral formula shows that the feedback capacity, recently characterized by Kim, is equal to the maximum instability that can be tolerated by the controller under a given power constraint. Finally, the control mapping is generalized to the N-sender AWGN multiple access channel. It is shown that Kramer's code for this channel, which is known to be sum rate optimal in the class of generalized linear feedback codes, can be obtained by solving a linear quadratic Gaussian control problem.Comment: Submitted to IEEE Transactions on Automatic Contro

    On the importance of nonlinear modeling in computer performance prediction

    Full text link
    Computers are nonlinear dynamical systems that exhibit complex and sometimes even chaotic behavior. The models used in the computer systems community, however, are linear. This paper is an exploration of that disconnect: when linear models are adequate for predicting computer performance and when they are not. Specifically, we build linear and nonlinear models of the processor load of an Intel i7-based computer as it executes a range of different programs. We then use those models to predict the processor loads forward in time and compare those forecasts to the true continuations of the time seriesComment: Appeared in "Proceedings of the 12th International Symposium on Intelligent Data Analysis
    • …
    corecore