249 research outputs found

    On the regularizing power of multigrid-type algorithms

    Get PDF
    We consider the deblurring problem of noisy and blurred images in the case of known space invariant point spread functions with four choices of boundary conditions. We combine an algebraic multigrid previously defined ad hoc for structured matrices related to space invariant operators (Toeplitz, circulants, trigonometric matrix algebras, etc.) and the classical geometric multigrid studied in the partial differential equations context. The resulting technique is parameterized in order to have more degrees of freedom: a simple choice of the parameters allows us to devise a quite powerful regularizing method. It defines an iterative regularizing method where the smoother itself has to be an iterative regularizing method (e.g., conjugate gradient, Landweber, conjugate gradient for normal equations, etc.). More precisely, with respect to the smoother, the regularization properties are improved and the total complexity is lower. Furthermore, in several cases, when it is directly applied to the system Af=gA{\bf f}={\bf g}, the quality of the restored image is comparable with that of all the best known techniques for the normal equations ATAf=ATgA^TA{\bf f}=A^T{\bf g}, but the related convergence is substantially faster. Finally, the associated curves of the relative errors versus the iteration numbers are ``flatter'' with respect to the smoother (the estimation of the stop iteration is less crucial). Therefore, we can choose multigrid procedures which are much more efficient than classical techniques without losing accuracy in the restored image (as often occurs when using preconditioning). Several numerical experiments show the effectiveness of our proposals

    A Variational Stereo Method for the Three-Dimensional Reconstruction of Ocean Waves

    Get PDF
    We develop a novel remote sensing technique for the observation of waves on the ocean surface. Our method infers the 3-D waveform and radiance of oceanic sea states via a variational stereo imagery formulation. In this setting, the shape and radiance of the wave surface are given by minimizers of a composite energy functional that combines a photometric matching term along with regularization terms involving the smoothness of the unknowns. The desired ocean surface shape and radiance are the solution of a system of coupled partial differential equations derived from the optimality conditions of the energy functional. The proposed method is naturally extended to study the spatiotemporal dynamics of ocean waves and applied to three sets of stereo video data. Statistical and spectral analysis are carried out. Our results provide evidence that the observed omnidirectional wavenumber spectrum S(k) decays as k-2.5 is in agreement with Zakharov's theory (1999). Furthermore, the 3-D spectrum of the reconstructed wave surface is exploited to estimate wave dispersion and currents

    Multilevel Approach For Signal Restoration Problems With Toeplitz Matrices

    Get PDF
    We present a multilevel method for discrete ill-posed problems arising from the discretization of Fredholm integral equations of the first kind. In this method, we use the Haar wavelet transform to define restriction and prolongation operators within a multigrid-type iteration. The choice of the Haar wavelet operator has the advantage of preserving matrix structure, such as Toeplitz, between grids, which can be exploited to obtain faster solvers on each level where an edge-preserving Tikhonov regularization is applied. Finally, we present results that indicate the promise of this approach for restoration of signals and images with edges

    EIT Reconstruction Algorithms: Pitfalls, Challenges and Recent Developments

    Full text link
    We review developments, issues and challenges in Electrical Impedance Tomography (EIT), for the 4th Workshop on Biomedical Applications of EIT, Manchester 2003. We focus on the necessity for three dimensional data collection and reconstruction, efficient solution of the forward problem and present and future reconstruction algorithms. We also suggest common pitfalls or ``inverse crimes'' to avoid.Comment: A review paper for the 4th Workshop on Biomedical Applications of EIT, Manchester, UK, 200

    Efficient distributed approach for density-based topology optimization using coarsening and h-refinement

    Get PDF
    This work presents an efficient parallel implementation of density-based topology optimization using Adaptive Mesh Refinement (AMR) schemes to reduce the computational burden of the bottleneck of the process, the evaluation of the objective function using Finite Element Analysis (FEA). The objective is to obtain an equivalent design to the one generated on a uniformly fine mesh using distributed memory computing but at a much cheaper computational cost. We propose using a fine mesh for the optimization and a coarse mesh for the analysis using coarsening and refinement criteria based on the thresholding of design variables. We evaluate the functional on the coarse mesh using a distributed conjugate gradient solver preconditioned by an algebraic multigrid (AMG) method showing its computational advantages in some cases by comparing with geometric multigrid (GMG) and AMG methods in two- and three-dimensional problems. We use different computational resources with small regularization distances for such comparisons. We also evaluate the performance and scalability of the proposal using a different number of computing cores and distributed computing hosts. The numerical results show a significant increment of the computing performance for the overall computing time of the proposal combining dynamic coarsening, adaptive mesh refinement, and distributed memory computing architecturesThis work has been supported by the AEI/FEDER and UE under the contract DPI2016-77538-R

    A Variational Wave Acquisition Stereo System for the 3-D Reconstruction of Oceanic Sea States

    Get PDF
    We propose a novel remote sensing technique that infers the three-dimensional wave form and radiance of oceanic sea states via a variational stereo imagery formulation. In this setting, the shape and radiance of the wave surface are minimizers of a composite cost functional which combines a data fidelity term and smoothness priors on the unknowns. The solution of a system of coupled partial differential equations derived from the cost functional yields the desired ocean surface shape and radiance. The proposed method is naturally extended to study the spatio-temporal dynamics of ocean waves, and applied to three sets of video data. Statistical and spectral analysis are carried out. The results shows evidence of the fact that the omni-directional wavenumber spectrum S(k) of the reconstructed waves decays as k^{-2.5} in agreement with Zakharov's theory (1999). Further, the three-dimensional spectrum of the reconstructed wave surface is exploited to estimate wave dispersion and currents

    Weak Statistical Constraints for Variational Stereo Imaging of Oceanic Waves

    Full text link
    We develop an observational technique for the stereoscopic reconstruction of the wave form of oceanic sea states via a variational stereo method. In the context of active surfaces, the shape and radiance of the wave surface are obtained as minimizers of an energy functional that combines image observations and smoothness priors. To obey the quasi Gaussianity of oceanic waves observed in nature, a given statistical wave law is enforced in the stereo variational framework as a weak constraint. Multigrid methods are then used to solve the partial differential equations derived from the optimality conditions of the augmented energy functional. An application of the developed method to two sets of experimental stereo data is finally presented
    corecore