9,454 research outputs found

    Application of new probabilistic graphical models in the genetic regulatory networks studies

    Get PDF
    This paper introduces two new probabilistic graphical models for reconstruction of genetic regulatory networks using DNA microarray data. One is an Independence Graph (IG) model with either a forward or a backward search algorithm and the other one is a Gaussian Network (GN) model with a novel greedy search method. The performances of both models were evaluated on four MAPK pathways in yeast and three simulated data sets. Generally, an IG model provides a sparse graph but a GN model produces a dense graph where more information about gene-gene interactions is preserved. Additionally, we found two key limitations in the prediction of genetic regulatory networks using DNA microarray data, the first is the sufficiency of sample size and the second is the complexity of network structures may not be captured without additional data at the protein level. Those limitations are present in all prediction methods which used only DNA microarray data.Comment: 38 pages, 3 figure

    A sparse regulatory network of copy-number driven expression reveals putative breast cancer oncogenes

    Full text link
    The influence of DNA cis-regulatory elements on a gene's expression has been intensively studied. However, little is known about expressions driven by trans-acting DNA hotspots. DNA hotspots harboring copy number aberrations are recognized to be important in cancer as they influence multiple genes on a global scale. The challenge in detecting trans-effects is mainly due to the computational difficulty in detecting weak and sparse trans-acting signals amidst co-occuring passenger events. We propose an integrative approach to learn a sparse interaction network of DNA copy-number regions with their downstream targets in a breast cancer dataset. Information from this network helps distinguish copy-number driven from copy-number independent expression changes on a global scale. Our result further delineates cis- and trans-effects in a breast cancer dataset, for which important oncogenes such as ESR1 and ERBB2 appear to be highly copy-number dependent. Further, our model is shown to be efficient and in terms of goodness of fit no worse than other state-of the art predictors and network reconstruction models using both simulated and real data.Comment: Accepted at IEEE International Conference on Bioinformatics & Biomedicine (BIBM 2010

    Inferring causal relations from multivariate time series : a fast method for large-scale gene expression data

    Get PDF
    Various multivariate time series analysis techniques have been developed with the aim of inferring causal relations between time series. Previously, these techniques have proved their effectiveness on economic and neurophysiological data, which normally consist of hundreds of samples. However, in their applications to gene regulatory inference, the small sample size of gene expression time series poses an obstacle. In this paper, we describe some of the most commonly used multivariate inference techniques and show the potential challenge related to gene expression analysis. In response, we propose a directed partial correlation (DPC) algorithm as an efficient and effective solution to causal/regulatory relations inference on small sample gene expression data. Comparative evaluations on the existing techniques and the proposed method are presented. To draw reliable conclusions, a comprehensive benchmarking on data sets of various setups is essential. Three experiments are designed to assess these methods in a coherent manner. Detailed analysis of experimental results not only reveals good accuracy of the proposed DPC method in large-scale prediction, but also gives much insight into all methods under evaluation
    corecore