6,390 research outputs found

    On the Recognition of Four-Directional Orthogonal Ray Graphs

    Get PDF
    Orthogonal ray graphs are the intersection graphs of horizontal and vertical rays (i.e. half-lines) in the plane. If the rays can have any possible orientation (left/right/up/down) then the graph is a 4-directional orthogonal ray graph (4-DORG). Otherwise, if all rays are only pointing into the positive x and y directions, the intersection graph is a 2-DORG. Similarly, for 3-DORGs, the horizontal rays can have any direction but the vertical ones can only have the positive direction. The recognition problem of 2-DORGs, which are a nice subclass of bipartite comparability graphs, is known to be polynomial, while the recognition problems for 3-DORGs and 4-DORGs are open. Recently it has been shown that the recognition of unit grid intersection graphs, a superclass of 4-DORGs, is NP-complete. In this paper we prove that the recognition problem of 4-DORGs is polynomial, given a partition {L,R,U,D} of the vertices of G (which corresponds to the four possible ray directions). For the proof, given the graph G, we first construct two cliques G 1,G 2 with both directed and undirected edges. Then we successively augment these two graphs, constructing eventually a graph TeX with both directed and undirected edges, such that G has a 4-DORG representation if and only if TeX has a transitive orientation respecting its directed edges. As a crucial tool for our analysis we introduce the notion of an S-orientation of a graph, which extends the notion of a transitive orientation. We expect that our proof ideas will be useful also in other situations. Using an independent approach we show that, given a permutation π of the vertices of U (π is the order of y-coordinates of ray endpoints for U), while the partition {L,R} of V ∖ U is not given, we can still efficiently check whether G has a 3-DORG representation

    Unit Grid Intersection Graphs: Recognition and Properties

    Full text link
    It has been known since 1991 that the problem of recognizing grid intersection graphs is NP-complete. Here we use a modified argument of the above result to show that even if we restrict to the class of unit grid intersection graphs (UGIGs), the recognition remains hard, as well as for all graph classes contained inbetween. The result holds even when considering only graphs with arbitrarily large girth. Furthermore, we ask the question of representing UGIGs on grids of minimal size. We show that the UGIGs that can be represented in a square of side length 1+epsilon, for a positive epsilon no greater than 1, are exactly the orthogonal ray graphs, and that there exist families of trees that need an arbitrarily large grid

    Extension of One-Dimensional Proximity Regions to Higher Dimensions

    Get PDF
    Proximity maps and regions are defined based on the relative allocation of points from two or more classes in an area of interest and are used to construct random graphs called proximity catch digraphs (PCDs) which have applications in various fields. The simplest of such maps is the spherical proximity map which maps a point from the class of interest to a disk centered at the same point with radius being the distance to the closest point from the other class in the region. The spherical proximity map gave rise to class cover catch digraph (CCCD) which was applied to pattern classification. Furthermore for uniform data on the real line, the exact and asymptotic distribution of the domination number of CCCDs were analytically available. In this article, we determine some appealing properties of the spherical proximity map in compact intervals on the real line and use these properties as a guideline for defining new proximity maps in higher dimensions. Delaunay triangulation is used to partition the region of interest in higher dimensions. Furthermore, we introduce the auxiliary tools used for the construction of the new proximity maps, as well as some related concepts that will be used in the investigation and comparison of them and the resulting graphs. We characterize the geometry invariance of PCDs for uniform data. We also provide some newly defined proximity maps in higher dimensions as illustrative examples

    Intersection Graphs of Rays and Grounded Segments

    Get PDF
    We consider several classes of intersection graphs of line segments in the plane and prove new equality and separation results between those classes. In particular, we show that: (1) intersection graphs of grounded segments and intersection graphs of downward rays form the same graph class, (2) not every intersection graph of rays is an intersection graph of downward rays, and (3) not every intersection graph of rays is an outer segment graph. The first result answers an open problem posed by Cabello and Jej\v{c}i\v{c}. The third result confirms a conjecture by Cabello. We thereby completely elucidate the remaining open questions on the containment relations between these classes of segment graphs. We further characterize the complexity of the recognition problems for the classes of outer segment, grounded segment, and ray intersection graphs. We prove that these recognition problems are complete for the existential theory of the reals. This holds even if a 1-string realization is given as additional input.Comment: 16 pages 12 Figure

    Geometric reconstruction methods for electron tomography

    Get PDF
    Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and nonlinear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180180^\circ tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire

    Using Points at Infinity for Parameter Decoupling in Camera Calibration

    Full text link

    On Reverse Shortest Paths in Geometric Proximity Graphs

    Get PDF
    corecore