456 research outputs found

    Precoded Chebyshev-NLMS based pre-distorter for nonlinear LED compensation in NOMA-VLC

    Get PDF
    Visible light communication (VLC) is one of the main technologies driving the future 5G communication systems due to its ability to support high data rates with low power consumption, thereby facilitating high speed green communications. To further increase the capacity of VLC systems, a technique called non-orthogonal multiple access (NOMA) has been suggested to cater to increasing demand for bandwidth, whereby users' signals are superimposed prior to transmission and detected at each user equipment using successive interference cancellation (SIC). Some recent results on NOMA exist which greatly enhance the achievable capacity as compared to orthogonal multiple access techniques. However, one of the performance-limiting factors affecting VLC systems is the nonlinear characteristics of a light emitting diode (LED). This paper considers the nonlinear LED characteristics in the design of pre-distorter for cognitive radio inspired NOMA in VLC, and proposes singular value decomposition based Chebyshev precoding to improve performance of nonlinear multiple-input multiple output NOMA-VLC. A novel and generalized power allocation strategy is also derived in this work, which is valid even in scenarios when users experience similar channels. Additionally, in this work, analytical upper bounds for the bit error rate of the proposed detector are derived for square MM-quadrature amplitude modulation.Comment: R. Mitra and V. Bhatia are with Indian Institute of Technology Indore, Indore-453552, India, Email:[email protected], [email protected]. This work was submitted to IEEE Transactions on Communications on October 26, 2016, decisioned on March 3, 2017, and revised on April 25, 2017, and is currently under review in IEEE Transactions on Communication

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    Optical Non-Orthogonal Multiple Access for Visible Light Communication

    Get PDF
    The proliferation of mobile Internet and connected devices, offering a variety of services at different levels of performance, represents a major challenge for the fifth generation wireless networks and beyond. This requires a paradigm shift towards the development of key enabling techniques for the next generation wireless networks. In this respect, visible light communication (VLC) has recently emerged as a new communication paradigm that is capable of providing ubiquitous connectivity by complementing radio frequency communications. One of the main challenges of VLC systems, however, is the low modulation bandwidth of the light-emitting-diodes, which is in the megahertz range. This article presents a promising technology, referred to as "optical- non-orthogonal multiple access (O-NOMA)", which is envisioned to address the key challenges in the next generation of wireless networks. We provide a detailed overview and analysis of the state-of-the-art integration of O-NOMA in VLC networks. Furthermore, we provide insights on the potential opportunities and challenges as well as some open research problems that are envisioned to pave the way for the future design and implementation of O-NOMA in VLC systems

    Capacity Analysis and Throughput Maximization of NOMA with Nonlinear Power Amplifier Distortion

    Full text link
    In future B5G/6G broadband communication systems, non-linear signal distortion caused by the impairment of transmit power amplifier (PA) can severely degrade the communication performance, especially when uplink users share the wireless medium using non-orthogonal multiple access (NOMA) schemes. This is because the successive interference cancellation (SIC) decoding technique, used in NOMA, is incapable of eliminating the interference caused by PA distortion. Consequently, each user's decoding process suffers from the cumulative distortion noise of all uplink users. In this paper, we establish a new and tractable PA distortion signal model based on real-world measurements, where the distortion noise power is a polynomial function of PA transmit power diverging from the oversimplified linear function commonly employed in existing studies. Applying the proposed signal model, we characterize the capacity rate region of multi-user uplink NOMA by optimizing the user transmit power. Our findings reveal a significant contraction in the capacity region of NOMA, attributable to polynomial distortion noise power. For practical engineering applications, we formulate a general weighted sum rate maximization (WSRMax) problem under individual user rate constraints. We further propose an efficient power control algorithm to attain the optimal performance. Numerical results show that the optimal power control policy under the proposed non-linear PA model achieves on average 13\% higher throughput compared to the policies assuming an ideal linear PA model. Overall, our findings demonstrate the importance of accurate PA distortion modeling to the performance of NOMA and provide efficient optimal power control method accordingly.Comment: The paper has been submitted for potential journal publication

    Near-Optimal Detection of CE-OFDM Signals with High Power Efficiency via GAMP-based Receivers

    Get PDF
    Proceeding of: 2022 IEEE Globecom Workshops (GC Wkshps), Rio de Janeiro, Brazil, 4-8 December 2022A quasi-optimum receiver based on the generalized approximate message passing (GAMP) concept is proposed for constant envelope orthogonal frequency division multiplexing (CE-OFDM) signals. Large modulation index results in large power efficiency for CE-OFDM, but the phase modulator introduces nonlinear distortion effects, precluding good performance for a simple phase detector. Our simulation results show that the GAMP receiver can achieve quasi-optimum performance and it can outperform the linear OFDM and CE-OFDM with phase detectors, for both additive white Gaussian noise (AWGN) and frequency selective channels.This work received funding from the European Union (EU) Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie ETN TeamUp5G, grant agreement No. 813391, the Spanish National Project IRENE-EARTH (PID2020-115323RB-C33) (MINECO/AEI/FEDER, UE) and Portuguese FCT Instituto de Telecomunicaçoes project UIDB/50008/2020
    corecore