1,823 research outputs found

    Classical and Quantum Complexity of the Sturm-Liouville Eigenvalue Problem

    Get PDF
    We study the approximation of the smallest eigenvalue of a Sturm-Liouville problem in the classical and quantum settings. We consider a univariate Sturm-Liouville eigenvalue problem with a nonnegative function qq from the class C2([0,1])C^2([0,1]) and study the minimal number n(\e) of function evaluations or queries that are necessary to compute an \e-approximation of the smallest eigenvalue. We prove that n(\e)=\Theta(\e^{-1/2}) in the (deterministic) worst case setting, and n(\e)=\Theta(\e^{-2/5}) in the randomized setting. The quantum setting offers a polynomial speedup with {\it bit} queries and an exponential speedup with {\it power} queries. Bit queries are similar to the oracle calls used in Grover's algorithm appropriately extended to real valued functions. Power queries are used for a number of problems including phase estimation. They are obtained by considering the propagator of the discretized system at a number of different time moments. They allow us to use powers of the unitary matrix exp(12iM)\exp(\tfrac12 {\rm i}M), where MM is an n×nn\times n matrix obtained from the standard discretization of the Sturm-Liouville differential operator. The quantum implementation of power queries by a number of elementary quantum gates that is polylog in nn is an open issue.Comment: 33 page

    NFFT meets Krylov methods: Fast matrix-vector products for the graph Laplacian of fully connected networks

    Get PDF
    The graph Laplacian is a standard tool in data science, machine learning, and image processing. The corresponding matrix inherits the complex structure of the underlying network and is in certain applications densely populated. This makes computations, in particular matrix-vector products, with the graph Laplacian a hard task. A typical application is the computation of a number of its eigenvalues and eigenvectors. Standard methods become infeasible as the number of nodes in the graph is too large. We propose the use of the fast summation based on the nonequispaced fast Fourier transform (NFFT) to perform the dense matrix-vector product with the graph Laplacian fast without ever forming the whole matrix. The enormous flexibility of the NFFT algorithm allows us to embed the accelerated multiplication into Lanczos-based eigenvalues routines or iterative linear system solvers and even consider other than the standard Gaussian kernels. We illustrate the feasibility of our approach on a number of test problems from image segmentation to semi-supervised learning based on graph-based PDEs. In particular, we compare our approach with the Nystr\"om method. Moreover, we present and test an enhanced, hybrid version of the Nystr\"om method, which internally uses the NFFT.Comment: 28 pages, 9 figure

    Discriminative Features via Generalized Eigenvectors

    Full text link
    Representing examples in a way that is compatible with the underlying classifier can greatly enhance the performance of a learning system. In this paper we investigate scalable techniques for inducing discriminative features by taking advantage of simple second order structure in the data. We focus on multiclass classification and show that features extracted from the generalized eigenvectors of the class conditional second moments lead to classifiers with excellent empirical performance. Moreover, these features have attractive theoretical properties, such as inducing representations that are invariant to linear transformations of the input. We evaluate classifiers built from these features on three different tasks, obtaining state of the art results
    corecore