7,871 research outputs found

    Crosstalk and the Dynamical Modularity of Feed-Forward Loops in Transcriptional Regulatory Networks

    Get PDF
    Network motifs, such as the feed-forward loop (FFL), introduce a range of complex behaviors to transcriptional regulatory networks, yet such properties are typically determined from their isolated study. We characterize the effects of crosstalk on FFL dynamics by modeling the cross regulation between two different FFLs and evaluate the extent to which these patterns occur in vivo. Analytical modeling suggests that crosstalk should overwhelmingly affect individual protein-expression dynamics. Counter to this expectation we find that entire FFLs are more likely than expected to resist the effects of crosstalk (approximate to 20% for one crosstalk interaction) and remain dynamically modular. The likelihood that cross-linked FFLs are dynamically correlated increases monotonically with additional crosstalk, but is independent of the specific regulation type or connectivity of the interactions. Just one additional regulatory interaction is sufficient to drive the FFL dynamics to a statistically different state. Despite the potential for modularity between sparsely connected network motifs, Escherichia coli (E. coli) appears to favor crosstalk wherein at least one of the cross-linked FFLs remains modular. A gene ontology analysis reveals that stress response processes are significantly overrepresented in the cross-linked motifs found within E. coli. Although the daunting complexity of biological networks affects the dynamical properties of individual network motifs, some resist and remain modular, seemingly insulated from extrinsic perturbations-an intriguing possibility for nature to consistently and reliably provide certain network functionalities wherever the need arise

    Fast randomized iteration: diffusion Monte Carlo through the lens of numerical linear algebra

    Full text link
    We review the basic outline of the highly successful diffusion Monte Carlo technique commonly used in contexts ranging from electronic structure calculations to rare event simulation and data assimilation, and propose a new class of randomized iterative algorithms based on similar principles to address a variety of common tasks in numerical linear algebra. From the point of view of numerical linear algebra, the main novelty of the Fast Randomized Iteration schemes described in this article is that they work in either linear or constant cost per iteration (and in total, under appropriate conditions) and are rather versatile: we will show how they apply to solution of linear systems, eigenvalue problems, and matrix exponentiation, in dimensions far beyond the present limits of numerical linear algebra. While traditional iterative methods in numerical linear algebra were created in part to deal with instances where a matrix (of size O(n2)\mathcal{O}(n^2)) is too big to store, the algorithms that we propose are effective even in instances where the solution vector itself (of size O(n)\mathcal{O}(n)) may be too big to store or manipulate. In fact, our work is motivated by recent DMC based quantum Monte Carlo schemes that have been applied to matrices as large as 10108Ă—1010810^{108} \times 10^{108}. We provide basic convergence results, discuss the dependence of these results on the dimension of the system, and demonstrate dramatic cost savings on a range of test problems.Comment: 44 pages, 7 figure

    SQG-Differential Evolution for difficult optimization problems under a tight function evaluation budget

    Full text link
    In the context of industrial engineering, it is important to integrate efficient computational optimization methods in the product development process. Some of the most challenging simulation-based engineering design optimization problems are characterized by: a large number of design variables, the absence of analytical gradients, highly non-linear objectives and a limited function evaluation budget. Although a huge variety of different optimization algorithms is available, the development and selection of efficient algorithms for problems with these industrial relevant characteristics, remains a challenge. In this communication, a hybrid variant of Differential Evolution (DE) is introduced which combines aspects of Stochastic Quasi-Gradient (SQG) methods within the framework of DE, in order to improve optimization efficiency on problems with the previously mentioned characteristics. The performance of the resulting derivative-free algorithm is compared with other state-of-the-art DE variants on 25 commonly used benchmark functions, under tight function evaluation budget constraints of 1000 evaluations. The experimental results indicate that the new algorithm performs excellent on the 'difficult' (high dimensional, multi-modal, inseparable) test functions. The operations used in the proposed mutation scheme, are computationally inexpensive, and can be easily implemented in existing differential evolution variants or other population-based optimization algorithms by a few lines of program code as an non-invasive optional setting. Besides the applicability of the presented algorithm by itself, the described concepts can serve as a useful and interesting addition to the algorithmic operators in the frameworks of heuristics and evolutionary optimization and computing

    Mortality affects adaptive allocation to growth and reproduction: field evidence from a guild of body snatchers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The probability of being killed by external factors (extrinsic mortality) should influence how individuals allocate limited resources to the competing processes of growth and reproduction. Increased extrinsic mortality should select for decreased allocation to growth and for increased reproductive effort. This study presents perhaps the first clear cross-species test of this hypothesis, capitalizing on the unique properties offered by a diverse guild of parasitic castrators (body snatchers). I quantify growth, reproductive effort, and expected extrinsic mortality for several species that, despite being different species, use the same species' phenotype for growth and survival. These are eight trematode parasitic castrators—the individuals of which infect and take over the bodies of the same host species—and their uninfected host, the California horn snail.</p> <p>Results</p> <p>As predicted, across species, growth decreased with increased extrinsic mortality, while reproductive effort increased with increased extrinsic mortality. The trematode parasitic castrator species (operating stolen host bodies) that were more likely to be killed by dominant species allocated less to growth and relatively more to current reproduction than did species with greater life expectancies. Both genders of uninfected snails fit into the patterns observed for the parasitic castrator species, allocating as much to growth and to current reproduction as expected given their probability of reproductive death (castration by trematode parasites). Additionally, species differences appeared to represent species-specific adaptations, not general plastic responses to local mortality risk.</p> <p>Conclusions</p> <p>Broadly, this research illustrates that parasitic castrator guilds can allow unique comparative tests discerning the forces promoting adaptive evolution. The specific findings of this study support the hypothesis that extrinsic mortality influences species differences in growth and reproduction.</p

    Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs

    Full text link
    We study two of the simple rules on finite graphs under the death-birth updating and the imitation updating discovered by Ohtsuki, Hauert, Lieberman and Nowak [Nature 441 (2006) 502-505]. Each rule specifies a payoff-ratio cutoff point for the magnitude of fixation probabilities of the underlying evolutionary game between cooperators and defectors. We view the Markov chains associated with the two updating mechanisms as voter model perturbations. Then we present a first-order approximation for fixation probabilities of general voter model perturbations on finite graphs subject to small perturbation in terms of the voter model fixation probabilities. In the context of regular graphs, we obtain algebraically explicit first-order approximations for the fixation probabilities of cooperators distributed as certain uniform distributions. These approximations lead to a rigorous proof that both of the rules of Ohtsuki et al. are valid and are sharp.Comment: Published in at http://dx.doi.org/10.1214/12-AAP849 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore