1,947 research outputs found

    On the Ramsey number of the triangle and the cube

    Get PDF
    The Ramsey number r(K 3,Q n ) is the smallest integer N such that every red-blue colouring of the edges of the complete graph K N contains either a red n-dimensional hypercube, or a blue triangle. Almost thirty years ago, Burr and Erdős conjectured that r(K 3,Q n )=2 n+1−1 for every n∈ℕ, but the first non-trivial upper bound was obtained only recently, by Conlon, Fox, Lee and Sudakov, who proved that r(K 3,Q n )⩽7000·2 n . Here we show that r(K 3,Q n )=(1+o(1))2 n+1 as n→∞

    Ramsey numbers of cubes versus cliques

    Get PDF
    The cube graph Q_n is the skeleton of the n-dimensional cube. It is an n-regular graph on 2^n vertices. The Ramsey number r(Q_n, K_s) is the minimum N such that every graph of order N contains the cube graph Q_n or an independent set of order s. Burr and Erdos in 1983 asked whether the simple lower bound r(Q_n, K_s) >= (s-1)(2^n - 1)+1 is tight for s fixed and n sufficiently large. We make progress on this problem, obtaining the first upper bound which is within a constant factor of the lower bound.Comment: 26 page

    Short proofs of some extremal results

    Get PDF
    We prove several results from different areas of extremal combinatorics, giving complete or partial solutions to a number of open problems. These results, coming from areas such as extremal graph theory, Ramsey theory and additive combinatorics, have been collected together because in each case the relevant proofs are quite short.Comment: 19 page

    Protected subspace Ramsey spectroscopy

    Full text link
    We study a modified Ramsey spectroscopy technique employing slowly decaying states for quantum metrology applications using dense ensembles. While closely positioned atoms exhibit superradiant collective decay and dipole-dipole induced frequency shifts, recent results [Ostermann, Ritsch and Genes, Phys. Rev. Lett. \textbf{111}, 123601 (2013)] suggest the possibility to suppress such detrimental effects and achieve an even better scaling of the frequency sensitivity with interrogation time than for noninteracting particles. Here we present an in-depth analysis of this 'protected subspace Ramsey technique' using improved analytical modeling and numerical simulations including larger 3D samples. Surprisingly we find that using sub-radiant states of NN particles to encode the atomic coherence yields a scaling of the optimal sensitivity better than 1/N1/\sqrt{N}. Applied to ultracold atoms in 3D optical lattices we predict a precision beyond the single atom linewidth.Comment: 9 pages, 7 figure

    On a problem of Erd\H{o}s and Rothschild on edges in triangles

    Get PDF
    Erd\H{o}s and Rothschild asked to estimate the maximum number, denoted by H(N,C), such that every N-vertex graph with at least CN^2 edges, each of which is contained in at least one triangle, must contain an edge that is in at least H(N,C) triangles. In particular, Erd\H{o}s asked in 1987 to determine whether for every C>0 there is \epsilon >0 such that H(N,C) > N^\epsilon, for all sufficiently large N. We prove that H(N,C) = N^{O(1/log log N)} for every fixed C < 1/4. This gives a negative answer to the question of Erd\H{o}s, and is best possible in terms of the range for C, as it is known that every N-vertex graph with more than (N^2)/4 edges contains an edge that is in at least N/6 triangles.Comment: 8 page

    Approximate Euclidean Ramsey theorems

    Full text link
    According to a classical result of Szemer\'{e}di, every dense subset of 1,2,...,N1,2,...,N contains an arbitrary long arithmetic progression, if NN is large enough. Its analogue in higher dimensions due to F\"urstenberg and Katznelson says that every dense subset of {1,2,...,N}d\{1,2,...,N\}^d contains an arbitrary large grid, if NN is large enough. Here we generalize these results for separated point sets on the line and respectively in the Euclidean space: (i) every dense separated set of points in some interval [0,L][0,L] on the line contains an arbitrary long approximate arithmetic progression, if LL is large enough. (ii) every dense separated set of points in the dd-dimensional cube [0,L]d[0,L]^d in \RR^d contains an arbitrary large approximate grid, if LL is large enough. A further generalization for any finite pattern in \RR^d is also established. The separation condition is shown to be necessary for such results to hold. In the end we show that every sufficiently large point set in \RR^d contains an arbitrarily large subset of almost collinear points. No separation condition is needed in this case.Comment: 11 pages, 1 figure

    How large dimension guarantees a given angle?

    Get PDF
    We study the following two problems: (1) Given n≥2n\ge 2 and \al, how large Hausdorff dimension can a compact set A\su\Rn have if AA does not contain three points that form an angle \al? (2) Given \al and \de, how large Hausdorff dimension can a %compact subset AA of a Euclidean space have if AA does not contain three points that form an angle in the \de-neighborhood of \al? An interesting phenomenon is that different angles show different behaviour in the above problems. Apart from the clearly special extreme angles 0 and 180∘180^\circ, the angles 60∘,90∘60^\circ,90^\circ and 120∘120^\circ also play special role in problem (2): the maximal dimension is smaller for these special angles than for the other angles. In problem (1) the angle 90∘90^\circ seems to behave differently from other angles

    An approximate version of Sidorenko's conjecture

    Get PDF
    A beautiful conjecture of Erd\H{o}s-Simonovits and Sidorenko states that if H is a bipartite graph, then the random graph with edge density p has in expectation asymptotically the minimum number of copies of H over all graphs of the same order and edge density. This conjecture also has an equivalent analytic form and has connections to a broad range of topics, such as matrix theory, Markov chains, graph limits, and quasirandomness. Here we prove the conjecture if H has a vertex complete to the other part, and deduce an approximate version of the conjecture for all H. Furthermore, for a large class of bipartite graphs, we prove a stronger stability result which answers a question of Chung, Graham, and Wilson on quasirandomness for these graphs.Comment: 12 page
    • …
    corecore