757 research outputs found

    Optimizing Emergency Transportation through Multicommodity Quickest Paths

    Get PDF
    In transportation networks with limited capacities and travel times on the arcs, a class of problems attracting a growing scientific interest is represented by the optimal routing and scheduling of given amounts of flow to be transshipped from the origin points to the specific destinations in minimum time. Such problems are of particular concern to emergency transportation where evacuation plans seek to minimize the time evacuees need to clear the affected area and reach the safe zones. Flows over time approaches are among the most suitable mathematical tools to provide a modelling representation of these problems from a macroscopic point of view. Among them, the Quickest Path Problem (QPP), requires an origin-destination flow to be routed on a single path while taking into account inflow limits on the arcs and minimizing the makespan, namely, the time instant when the last unit of flow reaches its destination. In the context of emergency transport, the QPP represents a relevant modelling tool, since its solutions are based on unsplittable dynamic flows that can support the development of evacuation plans which are very easy to be correctly implemented, assigning one single evacuation path to a whole population. This way it is possible to prevent interferences, turbulence, and congestions that may affect the transportation process, worsening the overall clearing time. Nevertheless, the current state-of-the-art presents a lack of studies on multicommodity generalizations of the QPP, where network flows refer to various populations, possibly with different origins and destinations. In this paper we provide a contribution to fill this gap, by considering the Multicommodity Quickest Path Problem (MCQPP), where multiple commodities, each with its own origin, destination and demand, must be routed on a capacitated network with travel times on the arcs, while minimizing the overall makespan and allowing the flow associated to each commodity to be routed on a single path. For this optimization problem, we provide the first mathematical formulation in the scientific literature, based on mixed integer programming and encompassing specific features aimed at empowering the suitability of the arising solutions in real emergency transportation plans. A computational experience performed on a set of benchmark instances is then presented to provide a proof-of-concept for our original model and to evaluate the quality and suitability of the provided solutions together with the required computational effort. Most of the instances are solved at the optimum by a commercial MIP solver, fed with a lower bound deriving from the optimal makespan of a splittable-flow relaxation of the MCQPP

    An annotated overview of dynamic network flows

    Get PDF
    The need for more realistic network models led to the development of the dynamic network flow theory. In dynamic flow models it takes time for the flow to pass an arc, the flow can be delayed at nodes, and the network parameters, e.g., the arc capacities, can change in time. Surprisingly perhaps, despite being closer to reality, dynamic flow models have been overshadowed by the classical, static model. This is largely due to the fact that while very efficient solution methods exist for static flow problems, dynamic flow problems have proved to be more difficult to solve. Our purpose with this overview is to compensate for this eclipse and introduce dynamic flows to the interested reader. To this end, we present the main flow problems that can appear in a dynamic network, and review the literature for existing results about them. Our approach is solution oriented, as opposed to dealing with modelling issues. We intend to provide a survey that can be a first step for readers wondering whether a given dynamic network flow problem has been solved or not. Besides restating the problems, we also describe the main proposed solution methods. An additional feature of this paper is an annotated list of the most important references about the subject
    • …
    corecore