9 research outputs found

    Guaranteed Private Communication with Secret Block Structure

    Full text link
    A novel private communication framework is proposed where privacy is induced by transmitting over channel instances of linear inverse problems that are identifiable to the legitimate receiver, but unidentifiable to an eavesdropper. The gap in identifiability is created in the framework by leveraging secret knowledge between the transmitter and the legitimate receiver. Specifically, the case where the legitimate receiver harnesses a secret block structure to decode a transmitted block-sparse message from underdetermined linear measurements in conditions where classical compressed sensing would provably fail is examined. The applicability of the proposed scheme to practical multiple access wireless communication systems is discussed. The protocol's privacy is studied under a single transmission, and under multiple transmissions without refreshing the secret block structure. It is shown that, under a specific scaling of the channel dimensions and transmission parameters, the eavesdropper can attempt to overhear the block structure from the fourth-order moments of the channel output. Computation of a statistical lower bound, suggests that the proposed fourth-order moment secret block estimation strategy is near optimal. The performance of a spectral clustering algorithm is studied to that end, defining scaling laws on the lifespan of the secret key before the communication is compromised. Finally, numerical experiments corroborating the theoretical findings are conducted.Comment: arXiv admin note: text overlap with arXiv:2110.0434

    Asymptotics and Statistical Inference in High-Dimensional Low-Rank Matrix Models

    Get PDF
    High-dimensional matrix and tensor data is ubiquitous in machine learning and statistics and often exhibits low-dimensional structure. With the rise of these types of data is the need to develop statistical inference procedures that adequately address the low-dimensional structure in a principled manner. In this dissertation we study asymptotic theory and statistical inference in structured low-rank matrix models in high-dimensional regimes where the column and row dimensions of the matrix are allowed to grow, and we consider a variety of settings for which structured low-rank matrix models manifest. Chapter 1 establishes the general framework for statistical analysis in high-dimensional low-rank matrix models, including introducing entrywise perturbation bounds, asymptotic theory, distributional theory, and statistical inference, illustrated throughout via the matrix denoising model. In Chapter 2, Chapter 3, and Chapter 4 we study the entrywise estimation of singular vectors and eigenvectors in different structured settings, with Chapter 2 considering heteroskedastic and dependent noise, Chapter 3 sparsity, and Chapter 4 additional tensor structure. In Chapter 5 we apply previous asymptotic theory to study a two-sample test for equality of distribution in network analysis, and in Chapter 6 we study a model for shared community memberships across multiple networks, and we propose and analyze a joint spectral clustering algorithm that leverages newly developed asymptotic theory for this setting. Throughout this dissertation we emphasize tools and techniques that are data-driven, nonparametric, and adaptive to signal strength, and, where applicable, noise distribution. The contents of Chapters 2-6 are based on the papers Agterberg et al. (2022b); Agterberg and Sulam (2022); Agterberg and Zhang (2022); Agterberg et al. (2020a) and Agterberg et al. (2022a) respectively, and Chapter 1 contains several novel results

    Characterizing neural mechanisms of attention-driven speech processing

    Get PDF

    On the Properties of the Rank-Two Null Space of Nonsparse and Canonical-Sparse Blind Deconvolution

    No full text

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods
    corecore