54,123 research outputs found

    Arithmetic, Set Theory, Reduction and Explanation

    Get PDF
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense of this claim, I offer evidence from mathematical practice, and I respond to contrary suggestions due to Steinhart, Maddy, Kitcher and Quine. I then show how, even if set-theoretic reductions are generally not explanatory, set theory can nevertheless serve as a legitimate foundation for mathematics. Finally, some implications of my thesis for philosophy of mathematics and philosophy of science are discussed. In particular, I suggest that some reductions in mathematics are probably explanatory, and I propose that differing standards of theory acceptance might account for the apparent lack of unexplanatory reductions in the empirical sciences

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page

    Hilbert's Program Then and Now

    Get PDF
    Hilbert's program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to "dispose of the foundational questions in mathematics once and for all, "Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, "finitary" means, one should give proofs of the consistency of these axiomatic systems. Although Godel's incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial successes, and generated important advances in logical theory and meta-theory, both at the time and since. The article discusses the historical background and development of Hilbert's program, its philosophical underpinnings and consequences, and its subsequent development and influences since the 1930s.Comment: 43 page

    Classical Predicative Logic-Enriched Type Theories

    Get PDF
    A logic-enriched type theory (LTT) is a type theory extended with a primitive mechanism for forming and proving propositions. We construct two LTTs, named LTTO and LTTO*, which we claim correspond closely to the classical predicative systems of second order arithmetic ACAO and ACA. We justify this claim by translating each second-order system into the corresponding LTT, and proving that these translations are conservative. This is part of an ongoing research project to investigate how LTTs may be used to formalise different approaches to the foundations of mathematics. The two LTTs we construct are subsystems of the logic-enriched type theory LTTW, which is intended to formalise the classical predicative foundation presented by Herman Weyl in his monograph Das Kontinuum. The system ACAO has also been claimed to correspond to Weyl's foundation. By casting ACAO and ACA as LTTs, we are able to compare them with LTTW. It is a consequence of the work in this paper that LTTW is strictly stronger than ACAO. The conservativity proof makes use of a novel technique for proving one LTT conservative over another, involving defining an interpretation of the stronger system out of the expressions of the weaker. This technique should be applicable in a wide variety of different cases outside the present work.Comment: 49 pages. Accepted for publication in special edition of Annals of Pure and Applied Logic on Computation in Classical Logic. v2: Minor mistakes correcte

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    W-types in setoids

    Full text link
    W-types and their categorical analogue, initial algebras for polynomial endofunctors, are an important tool in predicative systems to replace transfinite recursion on well-orderings. Current arguments to obtain W-types in quotient completions rely on assumptions, like Uniqueness of Identity Proofs, or on constructions that involve recursion into a universe, that limit their applicability to a specific setting. We present an argument, verified in Coq, that instead uses dependent W-types in the underlying type theory to construct W-types in the setoid model. The immediate advantage is to have a proof more type-theoretic in flavour, which directly uses recursion on the underlying W-type to prove initiality. Furthermore, taking place in intensional type theory and not requiring any recursion into a universe, it may be generalised to various categorical quotient completions, with the aim of finding a uniform construction of extensional W-types.Comment: 17 pages, formalised in Coq; v2: added reference to formalisatio

    Displayed Categories

    Get PDF
    We introduce and develop the notion of *displayed categories*. A displayed category over a category C is equivalent to "a category D and functor F : D --> C", but instead of having a single collection of "objects of D" with a map to the objects of C, the objects are given as a family indexed by objects of C, and similarly for the morphisms. This encapsulates a common way of building categories in practice, by starting with an existing category and adding extra data/properties to the objects and morphisms. The interest of this seemingly trivial reformulation is that various properties of functors are more naturally defined as properties of the corresponding displayed categories. Grothendieck fibrations, for example, when defined as certain functors, use equality on objects in their definition. When defined instead as certain displayed categories, no reference to equality on objects is required. Moreover, almost all examples of fibrations in nature are, in fact, categories whose standard construction can be seen as going via displayed categories. We therefore propose displayed categories as a basis for the development of fibrations in the type-theoretic setting, and similarly for various other notions whose classical definitions involve equality on objects. Besides giving a conceptual clarification of such issues, displayed categories also provide a powerful tool in computer formalisation, unifying and abstracting common constructions and proof techniques of category theory, and enabling modular reasoning about categories of multi-component structures. As such, most of the material of this article has been formalised in Coq over the UniMath library, with the aim of providing a practical library for use in further developments.Comment: v3: Revised and slightly expanded for publication in LMCS. Theorem numbering change

    Domains via approximation operators

    Full text link
    In this paper, we tailor-make new approximation operators inspired by rough set theory and specially suited for domain theory. Our approximation operators offer a fresh perspective to existing concepts and results in domain theory, but also reveal ways to establishing novel domain-theoretic results. For instance, (1) the well-known interpolation property of the way-below relation on a continuous poset is equivalent to the idempotence of a certain set-operator; (2) the continuity of a poset can be characterized by the coincidence of the Scott closure operator and the upper approximation operator induced by the way below relation; (3) meet-continuity can be established from a certain property of the topological closure operator. Additionally, we show how, to each approximating relation, an associated order-compatible topology can be defined in such a way that for the case of a continuous poset the topology associated to the way-below relation is exactly the Scott topology. A preliminary investigation is carried out on this new topology.Comment: 17 pages; 1figure, Domains XII Worksho
    • …
    corecore