77,629 research outputs found

    Implementation on a nonlinear concrete cracking algorithm in NASTRAN

    Get PDF
    A computer code for the analysis of reinforced concrete structures was developed using NASTRAN as a basis. Nonlinear iteration procedures were developed for obtaining solutions with a wide variety of loading sequences. A direct access file system was used to save results at each load step to restart within the solution module for further analysis. A multi-nested looping capability was implemented to control the iterations and change the loads. The basis for the analysis is a set of mutli-layer plate elements which allow local definition of materials and cracking properties

    Machining stability and machine tool dynamics

    Get PDF
    Machining is a common manufacturing process in industry due to its high flexibility and ability to produce parts which excellent quality. The productivity and quality in machining operations can be limited by several process constraints one of which is the self-excited chatter vibrations. Under certain conditions, the process may become unstable yielding oscillations with high amplitudes which result in poor surface finish and damage to the cutting tool, part and the machine tool itself. Stability analysis of the dynamic cutting process can be used to determine chatter-free machining conditions with high material removal rate. Since chatter is a result of the dynamic interactions between the process and the structures both cutting and machine tool dynamics are important elements of the stability analysis. In this paper, methods developed for stability analysis of cutting processes and machine tool dynamics will be presented. Implications of these methods in the selection of process parameters and machine tool design will be also discussed with example applications

    Thick-walled composite tubes for offshore applications : an example of stress and failure analysis for filament-wound multi-layered pipes

    Get PDF
    Acknowledgements Financial support of the part of this research by The Royal Society, The Royal Academy of Engineering, and The Carnegie Trust for the Universities of Scotland is gratefully acknowledged.Peer reviewedPostprin

    Dimensional hyper-reduction of nonlinear finite element models via empirical cubature

    Get PDF
    We present a general framework for the dimensional reduction, in terms of number of degrees of freedom as well as number of integration points (“hyper-reduction”), of nonlinear parameterized finite element (FE) models. The reduction process is divided into two sequential stages. The first stage consists in a common Galerkin projection onto a reduced-order space, as well as in the condensation of boundary conditions and external forces. For the second stage (reduction in number of integration points), we present a novel cubature scheme that efficiently determines optimal points and associated positive weights so that the error in integrating reduced internal forces is minimized. The distinguishing features of the proposed method are: (1) The minimization problem is posed in terms of orthogonal basis vector (obtained via a partitioned Singular Value Decomposition) rather that in terms of snapshots of the integrand. (2) The volume of the domain is exactly integrated. (3) The selection algorithm need not solve in all iterations a nonnegative least-squares problem to force the positiveness of the weights. Furthermore, we show that the proposed method converges to the absolute minimum (zero integration error) when the number of selected points is equal to the number of internal force modes included in the objective function. We illustrate this model reduction methodology by two nonlinear, structural examples (quasi-static bending and resonant vibration of elastoplastic composite plates). In both examples, the number of integration points is reduced three order of magnitudes (with respect to FE analyses) without significantly sacrificing accuracy.Peer ReviewedPostprint (published version

    The middeck 0-gravity dynamics experiment

    Get PDF
    The Middeck 0-Gravity Dynamics Experiment (MODE), flown onboard the Shuttle STS-48 Mission, consists of three major elements: the Experiment Support Module, a dynamics test bed providing computer experiment control, analog signal conditioning, power conditioning, an operator interface consisting of a keypad and display, experiment electrical and thermal control, and archival data storage: the Fluid Test Article assembly, used to investigate the dynamics of fluid-structure interaction in 0-gravity; and the Structural Test Article for investigating the open-loop dynamics of structures in 0-gravity. Deployable, erectable, and rotary modules were assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. Change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity. An experimental study of the lateral slosh behavior of contained fluids is also presented. A comparison of the measured earth and space results identifies and highlights the effects of gravity on the linear and nonlinear slosh behavior of these fluids
    • …
    corecore