7,130 research outputs found

    On the Probabilistic Degrees of Symmetric Boolean Functions

    Get PDF
    The probabilistic degree of a Boolean function f:{0,1}^n -> {0,1} is defined to be the smallest d such that there is a random polynomial P of degree at most d that agrees with f at each point with high probability. Introduced by Razborov (1987), upper and lower bounds on probabilistic degrees of Boolean functions - specifically symmetric Boolean functions - have been used to prove explicit lower bounds, design pseudorandom generators, and devise algorithms for combinatorial problems. In this paper, we characterize the probabilistic degrees of all symmetric Boolean functions up to polylogarithmic factors over all fields of fixed characteristic (positive or zero)

    Weighted Banzhaf power and interaction indexes through weighted approximations of games

    Get PDF
    The Banzhaf power index was introduced in cooperative game theory to measure the real power of players in a game. The Banzhaf interaction index was then proposed to measure the interaction degree inside coalitions of players. It was shown that the power and interaction indexes can be obtained as solutions of a standard least squares approximation problem for pseudo-Boolean functions. Considering certain weighted versions of this approximation problem, we define a class of weighted interaction indexes that generalize the Banzhaf interaction index. We show that these indexes define a subclass of the family of probabilistic interaction indexes and study their most important properties. Finally, we give an interpretation of the Banzhaf and Shapley interaction indexes as centers of mass of this subclass of interaction indexes

    Ignorance and indifference

    Get PDF
    The epistemic state of complete ignorance is not a probability distribution. In it, we assign the same, unique, ignorance degree of belief to any contingent outcome and each of its contingent, disjunctive parts. That this is the appropriate way to represent complete ignorance is established by two instruments, each individually strong enough to identify this state. They are the principle of indifference (PI) and the notion that ignorance is invariant under certain redescriptions of the outcome space, here developed into the 'principle of invariance of ignorance' (PII). Both instruments are so innocuous as almost to be platitudes. Yet the literature in probabilistic epistemology has misdiagnosed them as paradoxical or defective since they generate inconsistencies when conjoined with the assumption that an epistemic state must be a probability distribution. To underscore the need to drop this assumption, I express PII in its most defensible form as relating symmetric descriptions and show that paradoxes still arise if we assume the ignorance state to be a probability distribution. Copyright 2008 by the Philosophy of Science Association. All rights reserved

    Lower Bounds on Quantum Query Complexity

    Full text link
    Shor's and Grover's famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and specifically how to prove limits on their computational power. We cover the main known techniques for proving lower bounds, and exemplify and compare the methods.Comment: survey, 23 page

    A note on quantum algorithms and the minimal degree of epsilon-error polynomials for symmetric functions

    Full text link
    The degrees of polynomials representing or approximating Boolean functions are a prominent tool in various branches of complexity theory. Sherstov recently characterized the minimal degree deg_{\eps}(f) among all polynomials (over the reals) that approximate a symmetric function f:{0,1}^n-->{0,1} up to worst-case error \eps: deg_{\eps}(f) = ~\Theta(deg_{1/3}(f) + \sqrt{n\log(1/\eps)}). In this note we show how a tighter version (without the log-factors hidden in the ~\Theta-notation), can be derived quite easily using the close connection between polynomials and quantum algorithms.Comment: 7 pages LaTeX. 2nd version: corrected a few small inaccuracie

    Measuring the interactions among variables of functions over the unit hypercube

    Get PDF
    By considering a least squares approximation of a given square integrable function f ⁣:[0,1]nRf\colon[0,1]^n\to\R by a multilinear polynomial of a specified degree, we define an index which measures the overall interaction among variables of ff. This definition extends the concept of Banzhaf interaction index introduced in cooperative game theory. Our approach is partly inspired from multilinear regression analysis, where interactions among the independent variables are taken into consideration. We show that this interaction index has appealing properties which naturally generalize the properties of the Banzhaf interaction index. In particular, we interpret this index as an expected value of the difference quotients of ff or, under certain natural conditions on ff, as an expected value of the derivatives of ff. These interpretations show a strong analogy between the introduced interaction index and the overall importance index defined by Grabisch and Labreuche [7]. Finally, we discuss a few applications of the interaction index

    On quantum vs. classical probability

    Full text link
    Quantum theory shares with classical probability theory many important properties. I show that this common core regards at least the following six areas, and I provide details on each of these: the logic of propositions, symmetry, probabilities, composition of systems, state preparation and reductionism. The essential distinction between classical and quantum theory, on the other hand, is shown to be joint decidability versus smoothness; for the latter in particular I supply ample explanation and motivation. Finally, I argue that beyond quantum theory there are no other generalisations of classical probability theory that are relevant to physics.Comment: Major revision: key results unchanged, but derivation and discussion completely rewritten; 33 pages, no figure

    Fault Tolerance in Cellular Automata at High Fault Rates

    Full text link
    A commonly used model for fault-tolerant computation is that of cellular automata. The essential difficulty of fault-tolerant computation is present in the special case of simply remembering a bit in the presence of faults, and that is the case we treat in this paper. We are concerned with the degree (the number of neighboring cells on which the state transition function depends) needed to achieve fault tolerance when the fault rate is high (nearly 1/2). We consider both the traditional transient fault model (where faults occur independently in time and space) and a recently introduced combined fault model which also includes manufacturing faults (which occur independently in space, but which affect cells for all time). We also consider both a purely probabilistic fault model (in which the states of cells are perturbed at exactly the fault rate) and an adversarial model (in which the occurrence of a fault gives control of the state to an omniscient adversary). We show that there are cellular automata that can tolerate a fault rate 1/2ξ1/2 - \xi (with ξ>0\xi>0) with degree O((1/ξ2)log(1/ξ))O((1/\xi^2)\log(1/\xi)), even with adversarial combined faults. The simplest such automata are based on infinite regular trees, but our results also apply to other structures (such as hyperbolic tessellations) that contain infinite regular trees. We also obtain a lower bound of Ω(1/ξ2)\Omega(1/\xi^2), even with purely probabilistic transient faults only
    corecore