1,890 research outputs found

    Dynamics Spectrum Sharing Environment Using Deep Learning Techniques

    Get PDF
    The recent fast expansion of mobile communication services has resulted in a scarcity of spectrum resources. The challenge of multidimensional resource allocation in cognitive radio systems is addressed in this work. Complicated and dynamic Spectrum Sharing SS systems might be vulnerable to a variety of possible security and privacy vulnerabilities, necessitating protection techniques that are adaptable, dependable, and scalable. Methods based on machine learning (ML) have repeatedly been proposed to overcome these challenges. We present a complete assessment of the current progress of ML-based SS approaches, the most crucial security challenges, and the accompanying protection mechanisms in this paper. We develop cutting-edge methodologies for improving the performance of SS communication systems in a variety of critical areas, such as ML-based cognitive radio networks (CRNs), ML-based database assisted SS networks, ML-based LTE-U networks, ML-based ambient backscatter networks, and other ML-based SS solutions. The results of the simulation trials show that the suggested strategy may successfully boost the user's incentive while reducing collisions. In terms of reward, the suggested strategy beats opportunistic multichannel ALOHA by around 10% and 30%, respectively, for the single SU and multi-SU scenarios.&nbsp

    Efficient Anonymous Biometric Matching in Privacy-Aware Environments

    Get PDF
    Video surveillance is an important tool used in security and environmental monitoring, however, the widespread deployment of surveillance cameras has raised serious privacy concerns. Many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. To identify these individuals for protection, the most reliable approach is to use biometric signals as they are immutable and highly discriminative. If misused, these characteristics of biometrics can seriously defeat the goal of privacy protection. In this dissertation, an Anonymous Biometric Access Control (ABAC) procedure is proposed based on biometric signals for privacy-aware video surveillance. The ABAC procedure uses Secure Multi-party Computational (SMC) based protocols to verify membership of an incoming individual without knowing his/her true identity. To make SMC-based protocols scalable to large biometric databases, I introduce the k-Anonymous Quantization (kAQ) framework to provide an effective and secure tradeoff of privacy and complexity. kAQ limits systems knowledge of the incoming individual to k maximally dissimilar candidates in the database, where k is a design parameter that controls the amount of complexity-privacy tradeoff. The relationship between biometric similarity and privacy is experimentally validated using a twin iris database. The effectiveness of the entire system is demonstrated based on a public iris biometric database. To provide the protected subjects with full access to their privacy information in video surveillance system, I develop a novel privacy information management system that allows subjects to access their information via the same biometric signals used for ABAC. The system is composed of two encrypted-domain protocols: the privacy information encryption protocol encrypts the original video records using the iris pattern acquired during ABAC procedure; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of my framework

    Towards A Framework for Privacy-Preserving Pedestrian Analysis

    Get PDF
    The design of pedestrian-friendly infrastructures plays a crucial role in creating sustainable transportation in urban environments. Analyzing pedestrian behaviour in response to existing infrastructure is pivotal to planning, maintaining, and creating more pedestrian-friendly facilities. Many approaches have been proposed to extract such behaviour by applying deep learning models to video data. Video data, however, includes an broad spectrum of privacy-sensitive information about individuals, such as their location at a given time or who they are with. Most of the existing models use privacy-invasive methodologies to track, detect, and analyse individual or group pedestrian behaviour patterns. As a step towards privacy-preserving pedestrian analysis, this paper introduces a framework to anonymize all pedestrians before analyzing their behaviors. The proposed framework leverages recent developments in 3D wireframe reconstruction and digital in-painting to represent pedestrians with quantitative wireframes by removing their images while preserving pose, shape, and background scene context. To evaluate the proposed framework, a generic metric is introduced for each of privacy and utility. Experimental evaluation on widely-used datasets shows that the proposed framework outperforms traditional and state-of-the-art image filtering approaches by generating best privacy utility trade-off

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure
    corecore