1,112 research outputs found

    Power-Adaptive Computing System Design for Solar-Energy-Powered Embedded Systems

    Get PDF

    Overview of Swallow --- A Scalable 480-core System for Investigating the Performance and Energy Efficiency of Many-core Applications and Operating Systems

    Full text link
    We present Swallow, a scalable many-core architecture, with a current configuration of 480 x 32-bit processors. Swallow is an open-source architecture, designed from the ground up to deliver scalable increases in usable computational power to allow experimentation with many-core applications and the operating systems that support them. Scalability is enabled by the creation of a tile-able system with a low-latency interconnect, featuring an attractive communication-to-computation ratio and the use of a distributed memory configuration. We analyse the energy and computational and communication performances of Swallow. The system provides 240GIPS with each core consuming 71--193mW, dependent on workload. Power consumption per instruction is lower than almost all systems of comparable scale. We also show how the use of a distributed operating system (nOS) allows the easy creation of scalable software to exploit Swallow's potential. Finally, we show two use case studies: modelling neurons and the overlay of shared memory on a distributed memory system.Comment: An open source release of the Swallow system design and code will follow and references to these will be added at a later dat

    Horizontally distributed inference of deep neural networks for AI-enabled IoT

    Get PDF
    Motivated by the pervasiveness of artificial intelligence (AI) and the Internet of Things (IoT) in the current “smart everything” scenario, this article provides a comprehensive overview of the most recent research at the intersection of both domains, focusing on the design and development of specific mechanisms for enabling a collaborative inference across edge devices towards the in situ execution of highly complex state-of-the-art deep neural networks (DNNs), despite the resource-constrained nature of such infrastructures. In particular, the review discusses the most salient approaches conceived along those lines, elaborating on the specificities of the partitioning schemes and the parallelism paradigms explored, providing an organized and schematic discussion of the underlying workflows and associated communication patterns, as well as the architectural aspects of the DNNs that have driven the design of such techniques, while also highlighting both the primary challenges encountered at the design and operational levels and the specific adjustments or enhancements explored in response to them.Agencia Estatal de Investigación | Ref. DPI2017-87494-RMinisterio de Ciencia e Innovación | Ref. PDC2021-121644-I00Xunta de Galicia | Ref. ED431C 2022/03-GR
    corecore