1,819 research outputs found

    System level evaluation of interference in vehicular mobile broadband networks

    Get PDF

    Optimal Distributed Scheduling in Wireless Networks under the SINR interference model

    Full text link
    Radio resource sharing mechanisms are key to ensuring good performance in wireless networks. In their seminal paper \cite{tassiulas1}, Tassiulas and Ephremides introduced the Maximum Weighted Scheduling algorithm, and proved its throughput-optimality. Since then, there have been extensive research efforts to devise distributed implementations of this algorithm. Recently, distributed adaptive CSMA scheduling schemes \cite{jiang08} have been proposed and shown to be optimal, without the need of message passing among transmitters. However their analysis relies on the assumption that interference can be accurately modelled by a simple interference graph. In this paper, we consider the more realistic and challenging SINR interference model. We present {\it the first distributed scheduling algorithms that (i) are optimal under the SINR interference model, and (ii) that do not require any message passing}. They are based on a combination of a simple and efficient power allocation strategy referred to as {\it Power Packing} and randomization techniques. We first devise algorithms that are rate-optimal in the sense that they perform as well as the best centralized scheduling schemes in scenarios where each transmitter is aware of the rate at which it should send packets to the corresponding receiver. We then extend these algorithms so that they reach throughput-optimality

    Interference Management in Lte Downlink Networks

    Full text link

    Joint Scheduling of URLLC and eMBB Traffic in 5G Wireless Networks

    Full text link
    Emerging 5G systems will need to efficiently support both enhanced mobile broadband traffic (eMBB) and ultra-low-latency communications (URLLC) traffic. In these systems, time is divided into slots which are further sub-divided into minislots. From a scheduling perspective, eMBB resource allocations occur at slot boundaries, whereas to reduce latency URLLC traffic is pre-emptively overlapped at the minislot timescale, resulting in selective superposition/puncturing of eMBB allocations. This approach enables minimal URLLC latency at a potential rate loss to eMBB traffic. We study joint eMBB and URLLC schedulers for such systems, with the dual objectives of maximizing utility for eMBB traffic while immediately satisfying URLLC demands. For a linear rate loss model (loss to eMBB is linear in the amount of URLLC superposition/puncturing), we derive an optimal joint scheduler. Somewhat counter-intuitively, our results show that our dual objectives can be met by an iterative gradient scheduler for eMBB traffic that anticipates the expected loss from URLLC traffic, along with an URLLC demand scheduler that is oblivious to eMBB channel states, utility functions and allocation decisions of the eMBB scheduler. Next we consider a more general class of (convex/threshold) loss models and study optimal online joint eMBB/URLLC schedulers within the broad class of channel state dependent but minislot-homogeneous policies. A key observation is that unlike the linear rate loss model, for the convex and threshold rate loss models, optimal eMBB and URLLC scheduling decisions do not de-couple and joint optimization is necessary to satisfy the dual objectives. We validate the characteristics and benefits of our schedulers via simulation
    • …
    corecore