8,132 research outputs found

    On space-bounded synchronized alternating Turing machines

    Get PDF
    AbstractWe continue the study of the computational power of synchronized alternating Turing machines (SATM) introduced in (Hromkovič 1986, SlobodovĆ” 1987, 1988a, b) to allow communication via synchronization among processes of alternating Turing machines. We are interested in comparing the four main classes of space-bounded synchronized alternating Turing machines obtained by adding or removing off-line capability and nondeterminism (1SUTM(S(n)), SUTM(S(n)), 1SATM(S(n)), and SATM(S(n)) against one another and against other variants of alternating Turing machines. Denoting the class of languages accepted by machines in C by L(C), we show as our main results that L(1SUTM(S(n))) āŠ‚ L(SUTM(S(n))) āŠ‚ L(1SATM(S(n)))= L(SATM(S(n))) for all space-bounded functions S(n)Ļµo(n), and L(1SUTM(S(n)))= L(SUTM(S(n))) āŠ‚ L(1SATM(S(n)))=L(SATM(S(n))) for S(n)) ā©¾ n. Furthermore, we show that for log log(n) ā©½ S(n)Ļµo(log(n)), L(1SUTM(S(n))) is incomparable to L[1] ATM(S(n))). L(UTM(S(n))), L(1MUTM(S(n))), and L(MUTM(S(n))), where MATMs are alternating Turing machines with modified acceptance proposed in (Inoue 1989); in contrast, we show that these relationships become proper inclusions when log(n) ā©½ S(n)Ļµo(n).For deterministic synchronized alternating finite automata with at most k processes (1DSA(k)FA and DSA(k)FA) we establish a tight hierarchy on the number of processes for the one-way case, namely, L(1DSA(n)FA) āŠ‚ L(1DSA(n+1)FA) for all n > 0, and show that L(1DFA(2)) āˆ’ āˆŖk=1āˆžL(DSA(k)FA) ā‰  āˆ…, where DFA(k) denotes deterministic k-head finite automata. Finally we investigate closure properties under Boolean operations for some of these classes of languages

    A Distributed Frank-Wolfe Algorithm for Communication-Efficient Sparse Learning

    Full text link
    Learning sparse combinations is a frequent theme in machine learning. In this paper, we study its associated optimization problem in the distributed setting where the elements to be combined are not centrally located but spread over a network. We address the key challenges of balancing communication costs and optimization errors. To this end, we propose a distributed Frank-Wolfe (dFW) algorithm. We obtain theoretical guarantees on the optimization error Ļµ\epsilon and communication cost that do not depend on the total number of combining elements. We further show that the communication cost of dFW is optimal by deriving a lower-bound on the communication cost required to construct an Ļµ\epsilon-approximate solution. We validate our theoretical analysis with empirical studies on synthetic and real-world data, which demonstrate that dFW outperforms both baselines and competing methods. We also study the performance of dFW when the conditions of our analysis are relaxed, and show that dFW is fairly robust.Comment: Extended version of the SIAM Data Mining 2015 pape

    Mean-payoff Automaton Expressions

    Get PDF
    Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable. We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic mean-payoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions

    Space shuttle avionics system

    Get PDF
    The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technology, flight software, flight control integration, digital fly-by-wire technology, crew display interface, and operational concepts. The origins and the evolution of the system are traced; the requirements, the constraints, and other factors which led to the final configuration are outlined; and the functional operation of the system is described. An overall system block diagram is included
    • ā€¦
    corecore